Reinforcement Learning in Continuous Time and Space

- From K. Doya, Neural Computation I2,2 I9-245, 2000

Continuous Time

Discounted Value Function

- Continuous time dynamical system: $\dot{\mathbf{x}}=\mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))$
- Reward: $r(t)=r(\mathbf{x}(t), \mathbf{u}(t))$
- Policy: $\mathbf{u}(t)=\boldsymbol{\mu}(\mathbf{x}(t))$
- The policy's decaying (i.e. discounted) value function:

$$
V^{\mu}(\mathbf{x}(t))=\int_{t}^{\infty} e^{-\frac{s-t}{r}} r(\mathbf{x}(s), \mathbf{u}(s)) d s
$$

- Optimal policy's value function

$$
V^{*}(\mathbf{x}(t))=\max _{\mathbf{u}[t, \infty)}\left[\int_{t}^{\infty} e^{-\frac{s-t}{r}} r(\mathbf{x}(s), \mathbf{u}(s)) d s\right]
$$

Continuous Time HJB for Discounted Rewards

- Separate integral into $[t, t+\Delta t]$ and $[t+\Delta t, \infty)$:

$$
V^{*}(\mathbf{x}(t))=\max _{\mathbf{u}[t, t+\Delta t]}[\underbrace{\int_{t}^{t+\Delta t \infty} e^{-\frac{s-t}{r}} r(\mathbf{x}(s), \mathbf{u}(s)) d s}_{\approx r(\mathbf{x}(t), \mathbf{u}(t)) \Delta t}+e^{-\frac{\Delta t}{r}} V^{*}(\mathbf{x}(t+\Delta t))]
$$

- Approximate $\mathrm{V}^{*}(\mathbf{x}(t+\Delta t))$ by Taylor 1st degree

$$
V^{*}(\mathbf{x}(t+\Delta t)) \approx V^{*}(\mathbf{x}(t))+\frac{\partial V^{*}}{\partial \mathbf{x}(t)} \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) \Delta t
$$

- Plug in and rearrange a bit
$\left(1-e^{-\frac{\Delta t}{r}}\right) V^{*}(\mathbf{x}(t))=\max _{\mathbf{u}[t, t+\Delta t]}\left[r(\mathbf{x}(t), \mathbf{u}(t)) \Delta t+e^{-\frac{\Delta t}{r}} \frac{\partial V^{*}}{\partial \mathbf{x}(t)} \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t)) \Delta t\right]$
- Take $\Delta t \rightarrow 0$

$$
\frac{1}{\tau} V^{*}(\mathbf{x}(t))=\max _{\mathbf{u}(t)}\left[r(\mathbf{x}(t), \mathbf{u}(t))+\frac{\partial V^{*}}{\partial \mathbf{x}(t)} \mathbf{f}(\mathbf{x}(t), \mathbf{u}(t))\right]
$$

* compare with original HJB

$$
-\frac{\partial J^{0}}{\partial t}=\min _{\mathbf{u}(t)}\left\{L(\mathbf{x}, \mathbf{u}(t), t)+\frac{\partial J^{0}}{\partial \mathbf{x}} \mathbf{f}(\mathbf{x}, \mathbf{u}(t), t)\right\}
$$

- Solution approach: GPI

- Must use function approximators!

Learning the Value Function

- Use function approximator with parameter vector $\mathbf{w}: V^{\mu}(\mathbf{x}(t)) \simeq V(\mathbf{x}(t) ; \mathbf{w})$
- by HJB: $\frac{1}{\tau} V^{\mu}(\mathbf{x}(t))=r(\mathbf{x}(t), \boldsymbol{\mu}(\mathbf{x}(t)))+\underbrace{\frac{\partial V^{\mu}}{\partial \mathbf{x}(t)} \mathbf{f}(\mathbf{x}(t), \boldsymbol{\mu}(\mathbf{x}(t)))}$
i.e. $\quad \dot{V}^{\mu}(\mathbf{x}(t))=\frac{1}{\tau} V^{\mu}(\mathbf{x}(t))-r(t)$

$$
=\dot{V}^{\mu}(t)
$$

- Define the inconsistency (TD error) as $\delta(t) \equiv r(t)-\frac{1}{\tau} V(t)+\dot{V}(t)$
- Reduce inconsistency by correcting weights:

$$
\dot{\mathbf{w}}=\eta \delta(t) \frac{\partial V(\mathbf{x}(t), \mathbf{w})}{\partial \mathbf{w}}
$$

where η is a scaling factor

- This is $\operatorname{TD}(0)$
- Correction decays exponentially. I.e. the desired correction due to the current discrepancy is

$$
\hat{V}(t)= \begin{cases}\delta\left(t_{0}\right) e^{-\frac{t_{0}-t}{\tau}} & t \leq t_{0} \\ 0 & t>t_{0}\end{cases}
$$

- The weights should therefore be updated by

$$
\dot{\mathbf{w}}=\eta \delta\left(t_{0}\right) \underbrace{\int_{-\infty}^{t_{0}} e^{-\frac{t_{0}-t}{\tau}} \frac{\partial V(\mathbf{x}(t), \mathbf{w})}{\partial \mathbf{w}} d t}_{\text {eligibility, } \mathbf{e}(t)}
$$

- The eligibility can be computed as a linear (time varying) dynamical system

$$
\begin{aligned}
\dot{\mathbf{w}} & =\eta \delta(t) \mathbf{e}(t) \\
\dot{\mathbf{e}}_{i}(t) & =-\frac{1}{\kappa} \mathbf{e}(t)+\frac{\partial V(\mathbf{x}(t), \mathbf{w})}{\partial \mathbf{w}}
\end{aligned}
$$

where κ is a time decay constant

Policy Improvement by Value Gradient

- If we know $r(\mathbf{x}(t), \mathbf{u})$ and $\mathbf{f}(\mathbf{x}(i), \mathbf{u})$ we can select action that maximizes expected reward:

$$
\mathbf{u}(t)=\mu(\mathbf{x}(t))=\arg \max _{\mathbf{u} \in U}\left[r(\mathbf{x}(t), \mathbf{u})+\frac{\partial V(\mathbf{x})}{\partial \mathbf{x}} f(\mathbf{x}(t), \mathbf{u})\right]
$$

- This is not full DP because it is only done on visited states
- Can be difficult in general. If r is convex in \mathbf{u} and \mathbf{f} is linear in \mathbf{u} the solution is unique and easy to find.
- If \mathbf{u} is bounded (say by ± 1) we can either clip the result or do it more smoothly with a sigmoid, $\mathrm{s}(\mathbf{u})=2 / \pi \arctan (c \mathbf{u})$ (where c determines sensitivity).
- f and r can be learned on line (with function approximators) and used here instead of the "true" pair.

Pendulum Swing-Up,

Limited Torque

- State $=[\theta, \omega=d \theta / d t]$
- Control $u=$ torque $=d \omega / d t$
- Model is known: $\dot{\theta}=\omega$ and $m l^{2} \dot{\omega}=-\mu \omega+m g l \sin \theta+u$
- Value function approximated by a normalized Gaussian network

$$
V(\mathbf{x}, \mathbf{w})=\frac{\sum_{k=1}^{K} w_{k} e^{-\frac{\left\|\mathbf{x}-\mathbf{c}_{k}\right\|^{2}}{\sigma_{k}^{2}}}}{\sum_{k=1}^{K} e^{-\frac{\left\|\mathbf{x}-\mathbf{c}_{k}\right\|^{2}}{\sigma_{k}^{2}}}}
$$

- Reward $=\cos (\theta)-0.1 u-0.1|\omega|$
- Used eligibility trace (time constant $\kappa=0.7$)
- Model simulated by Runge Kutta 4 with $d t=0.07$. Learning dynamics (eligibility trace) simulated by Euler method

Pendulum Results

A

C

0.7 D

Figure 4: Comparison of the time course of learning with different control schemes: (A) discrete actor-critic, (B) continuous actor-critic, (C) value-gradientbased policy with an exact model, (D) value-gradient policy with a learned model (note the different scales). $t_{u p}$: time in which the pendulum stayed up. In

