General pseudo-inverse

if A has SVD $A=U \Sigma V^{T}$,

$$
A^{\dagger}=V \Sigma^{-1} U^{T}
$$

is the pseudo-inverse or Moore-Penrose inverse of A
if A is skinny and full rank,

$$
A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}
$$

gives the least-squares solution $x_{1 \mathrm{~s}}=A^{\dagger} y$
if A is fat and full rank,

$$
A^{\dagger}=A^{T}\left(A A^{T}\right)^{-1}
$$

gives the least-norm solution $x_{\ln }=A^{\dagger} y$

Full SVD

SVD of $A \in \mathbf{R}^{m \times n}$ with $\operatorname{Rank}(A)=r:$

$$
A=U_{1} \Sigma_{1} V_{1}^{T}=\left[\begin{array}{lll}
u_{1} & \cdots & u_{r}
\end{array}\right]\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right]\left[\begin{array}{c}
v_{1}^{T} \\
\vdots \\
v_{r}^{T}
\end{array}\right]
$$

- find $U_{2} \in \mathbf{R}^{m \times(m-r)}, V_{2} \in \mathbf{R}^{n \times(n-r)}$ s.t. $U=\left[U_{1} U_{2}\right] \in \mathbf{R}^{m \times m}$ and $V=\left[V_{1} V_{2}\right] \in \mathbf{R}^{n \times n}$ are orthogonal
- add zero rows/cols to Σ_{1} to form $\Sigma \in \mathbf{R}^{m \times n}$:

$$
\Sigma=\left[\begin{array}{c|c}
\Sigma_{1} & 0_{r \times(n-r)} \\
\hline 0_{(m-r) \times r} & 0_{(m-r) \times(n-r)}
\end{array}\right]
$$

then we have
$A=U_{1} \Sigma_{1} V_{1}^{T}=\left[U_{1} \mid U_{2}\right]\left[\begin{array}{c|c}\Sigma_{1} & 0_{r \times(n-r)} \\ \hline 0_{(m-r) \times r} & 0_{(m-r) \times(n-r)}\end{array}\right]\left[\begin{array}{c}V_{1}^{T} \\ \hline V_{2}^{T}\end{array}\right]$
i.e.:

$$
A=U \Sigma V^{T}
$$

called full SVD of A
(SVD with positive singular values only called compact SVD)

Image of unit ball under linear transformation

full SVD:

$$
A=U \Sigma V^{T}
$$

gives intepretation of $y=A x$:

- rotate (by V^{T})
- stretch along axes by $\sigma_{i}\left(\sigma_{i}=0\right.$ for $\left.i>r\right)$
- zero-pad (if $m>n$) or truncate (if $m<n$) to get m-vector
- rotate (by U)

Image of unit ball under A

$\{A x \mid\|x\| \leq 1\}$ is ellipsoid with principal axes $\sigma_{i} u_{i}$.

Sensitivity of linear equations to data error

consider $y=A x, A \in \mathbf{R}^{n \times n}$ invertible; of course $x=A^{-1} y$
suppose we have an error or noise in y, i.e., y becomes $y+\delta y$
then x becomes $x+\delta x$ with $\delta x=A^{-1} \delta y$
hence we have $\|\delta x\|=\left\|A^{-1} \delta y\right\| \leq\left\|A^{-1}\right\|\|\delta y\|$
if $\left\|A^{-1}\right\|$ is large,

- small errors in y can lead to large errors in x
- can't solve for x given y (with small errors)
- hence, A can be considered singular in practice
a more refined analysis uses relative instead of absolute errors in x and y since $y=A x$, we also have $\|y\| \leq\|A\|\|x\|$, hence

$$
\begin{gathered}
\frac{\|\delta x\|}{\|x\|} \leq\|A\|\left\|A^{-1}\right\| \frac{\|\delta y\|}{\|y\|} \\
\kappa(A)=\|A\|\left\|A^{-1}\right\|=\sigma_{\max }(A) / \sigma_{\min }(A)
\end{gathered}
$$

is called the condition number of A
we have:
relative error in solution $x \leq$ condition number • relative error in data y or, in terms of \# bits of guaranteed accuracy:
$\#$ bits accuacy in solution $\approx \#$ bits accuracy in data $-\log _{2} \kappa$
we say

- A is well conditioned if κ is small
- A is poorly conditioned if κ is large
(definition of 'small' and 'large' depend on application)
same analysis holds for least-squares solutions with A nonsquare, $\kappa=\sigma_{\max }(A) / \sigma_{\min }(A)$

State estimation set up

we consider the discrete-time system

$$
x(t+1)=A x(t)+B u(t)+w(t), \quad y(t)=C x(t)+D u(t)+v(t)
$$

- w is state disturbance or noise
- v is sensor noise or error
- A, B, C, and D are known
- u and y are observed over time interval $[0, t-1]$
- w and v are not known, but can be described statistically, or assumed small (e.g., in RMS value)

State estimation problem

state estimation problem: estimate $x(s)$ from

$$
u(0), \ldots, u(t-1), y(0), \ldots, y(t-1)
$$

- $s=0$: estimate initial state
- $s=t-1$: estimate current state
- $s=t$: estimate (i.e., predict) next state
an algorithm or system that yields an estimate $\hat{x}(s)$ is called an observer or state estimator
$\hat{x}(s)$ is denoted $\hat{x}(s \mid t-1)$ to show what information estimate is based on (read, " $\hat{x}(s)$ given $t-1$ ")

Noiseless case

let's look at finding $x(0)$, with no state or measurement noise:

$$
x(t+1)=A x(t)+B u(t), \quad y(t)=C x(t)+D u(t)
$$

with $x(t) \in \mathbf{R}^{n}, u(t) \in \mathbf{R}^{m}, y(t) \in \mathbf{R}^{p}$
then we have

$$
\left[\begin{array}{c}
y(0) \\
\vdots \\
y(t-1)
\end{array}\right]=\mathcal{O}_{t} x(0)+\mathcal{T}_{t}\left[\begin{array}{c}
u(0) \\
\vdots \\
u(t-1)
\end{array}\right]
$$

where

$$
\mathcal{O}_{t}=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{t-1}
\end{array}\right], \quad \mathcal{T}_{t}=\left[\begin{array}{ccccc}
D & 0 & \cdots & & \\
C B & D & 0 & \cdots & \\
\vdots & & & & \\
C A^{t-2} B & C A^{t-3} B & \cdots & C B & D
\end{array}\right]
$$

- \mathcal{O}_{t} maps initials state into resulting output over $[0, t-1]$
- \mathcal{T}_{t} maps input to output over $[0, t-1]$
hence we have

$$
\mathcal{O}_{t} x(0)=\left[\begin{array}{c}
y(0) \\
\vdots \\
y(t-1)
\end{array}\right]-\mathcal{T}_{t}\left[\begin{array}{c}
u(0) \\
\vdots \\
u(t-1)
\end{array}\right]
$$

RHS is known, $x(0)$ is to be determined
hence:

- can uniquely determine $x(0)$ if and only if $\mathcal{N}\left(\mathcal{O}_{t}\right)=\{0\}$
- $\mathcal{N}\left(\mathcal{O}_{t}\right)$ gives ambiguity in determining $x(0)$
- if $x(0) \in \mathcal{N}\left(\mathcal{O}_{t}\right)$ and $u=0$, output is zero over interval $[0, t-1]$
- input u does not affect ability to determine $x(0)$; its effect can be subtracted out

Observability matrix

by C-H theorem, each A^{k} is linear combination of A^{0}, \ldots, A^{n-1} hence for $t \geq n, \mathcal{N}\left(\mathcal{O}_{t}\right)=\mathcal{N}(\mathcal{O})$ where

$$
\mathcal{O}=\mathcal{O}_{n}=\left[\begin{array}{c}
C \\
C A \\
\vdots \\
C A^{n-1}
\end{array}\right]
$$

is called the observability matrix
if $x(0)$ can be deduced from u and y over $[0, t-1]$ for any t, then $x(0)$ can be deduced from u and y over $[0, n-1$]
$\mathcal{N}(\mathcal{O})$ is called unobservable subspace; describes ambiguity in determining state from input and output
system is called observable if $\mathcal{N}(\mathcal{O})=\{0\}$, i.e., $\operatorname{Rank}(\mathcal{O})=n$

Observers for noiseless case

suppose $\operatorname{Rank}\left(\mathcal{O}_{t}\right)=n$ (i.e., system is observable) and let F be any left inverse of \mathcal{O}_{t}, i.e., $F \mathcal{O}_{t}=I$
then we have the observer

$$
x(0)=F\left(\left[\begin{array}{c}
y(0) \\
\vdots \\
y(t-1)
\end{array}\right]-\mathcal{T}_{t}\left[\begin{array}{c}
u(0) \\
\vdots \\
u(t-1)
\end{array}\right]\right)
$$

which deduces $x(0)$ (exactly) from u, y over $[0, t-1]$
in fact we have

$$
x(\tau-t+1)=F\left(\left[\begin{array}{c}
y(\tau-t+1) \\
\vdots \\
y(\tau)
\end{array}\right]-\mathcal{T}_{t}\left[\begin{array}{c}
u(\tau-t+1) \\
\vdots \\
u(\tau)
\end{array}\right]\right)
$$

i.e., our observer estimates what state was $t-1$ epochs ago, given past $t-1$ inputs \& outputs
observer is (multi-input, multi-output) finite impulse response (FIR) filter, with inputs u and y, and output \hat{x}

Invariance of unobservable set

fact: the unobservable subspace $\mathcal{N}(\mathcal{O})$ is invariant, i.e., if $z \in \mathcal{N}(\mathcal{O})$, then $A z \in \mathcal{N}(\mathcal{O})$
proof: suppose $z \in \mathcal{N}(\mathcal{O})$, i.e., $C A^{k} z=0$ for $k=0, \ldots, n-1$
evidently $C A^{k}(A z)=0$ for $k=0, \ldots, n-2$;

$$
C A^{n-1}(A z)=C A^{n} z=-\sum_{i=0}^{n-1} \alpha_{i} C A^{i} z=0
$$

(by C-H) where

$$
\operatorname{det}(s I-A)=s^{n}+\alpha_{n-1} s^{n-1}+\cdots+\alpha_{0}
$$

Continuous-time observability

continuous-time system with no sensor or state noise:

$$
\dot{x}=A x+B u, \quad y=C x+D u
$$

can we deduce state x from u and y ?
let's look at derivatives of y :

$$
\begin{aligned}
y & =C x+D u \\
\dot{y} & =C \dot{x}+D \dot{u}=C A x+C B u+D \dot{u} \\
\ddot{y} & =C A^{2} x+C A B u+C B \dot{u}+D \ddot{u}
\end{aligned}
$$

and so on
hence we have

$$
\left[\begin{array}{c}
y \\
\dot{y} \\
\vdots \\
y^{(n-1)}
\end{array}\right]=\mathcal{O} x+\mathcal{T}\left[\begin{array}{c}
u \\
\dot{u} \\
\vdots \\
u^{(n-1)}
\end{array}\right]
$$

where \mathcal{O} is the observability matrix and

$$
\mathcal{T}=\left[\begin{array}{ccccc}
D & 0 & \cdots & & \\
C B & D & 0 & \cdots & \\
\vdots & & & & \\
C A^{n-2} B & C A^{n-3} B & \cdots & C B & D
\end{array}\right]
$$

(same matrices we encountered in discrete-time case!)
rewrite as

$$
\mathcal{O} x=\left[\begin{array}{c}
y \\
\dot{y} \\
\vdots \\
y^{(n-1)}
\end{array}\right]-\mathcal{T}\left[\begin{array}{c}
u \\
\dot{u} \\
\vdots \\
u^{(n-1)}
\end{array}\right]
$$

RHS is known; x is to be determined
hence if $\mathcal{N}(\mathcal{O})=\{0\}$ we can deduce $x(t)$ from derivatives of $u(t), y(t)$ up to order $n-1$
in this case we say system is observable can construct an observer using any left inverse F of \mathcal{O} :

$$
x=F\left(\left[\begin{array}{c}
y \\
\dot{y} \\
\vdots \\
y^{(n-1)}
\end{array}\right]-\mathcal{T}\left[\begin{array}{c}
u \\
\dot{u} \\
\vdots \\
u^{(n-1)}
\end{array}\right]\right)
$$

- reconstructs $x(t)$ (exactly and instantaneously) from

$$
u(t), \ldots, u^{(n-1)}(t), y(t), \ldots, y^{(n-1)}(t)
$$

- derivative-based state reconstruction is dual of state transfer using impulsive inputs

A converse

suppose $z \in \mathcal{N}(\mathcal{O})$ (the unobservable subspace), and u is any input, with x, y the corresponding state and output, i.e.,

$$
\dot{x}=A x+B u, \quad y=C x+D u
$$

then state trajectory $\tilde{x}=x+e^{t A} z$ satisfies

$$
\dot{\tilde{x}}=A \tilde{x}+B u, \quad y=C \tilde{x}+D u
$$

i.e., input/output signals u, y consistent with both state trajectories x, \tilde{x}
hence if system is unobservable, no signal processing of any kind applied to u and y can deduce x
unobservable subspace $\mathcal{N}(\mathcal{O})$ gives fundamental ambiguity in deducing x from u, y

Least-squares observers

discrete-time system, with sensor noise:

$$
x(t+1)=A x(t)+B u(t), \quad y(t)=C x(t)+D u(t)+v(t)
$$

we assume $\operatorname{Rank}\left(\mathcal{O}_{t}\right)=n$ (hence, system is observable)
least-squares observer uses pseudo-inverse:

$$
\hat{x}(0)=\mathcal{O}_{t}^{\dagger}\left(\left[\begin{array}{c}
y(0) \\
\vdots \\
y(t-1)
\end{array}\right]-\mathcal{T}_{t}\left[\begin{array}{c}
u(0) \\
\vdots \\
u(t-1)
\end{array}\right]\right)
$$

where $\mathcal{O}_{t}^{\dagger}=\left(\mathcal{O}_{t}^{T} \mathcal{O}_{t}\right)^{-1} \mathcal{O}_{t}^{T}$
interpretation: $\hat{x}_{\mathrm{ls}}(0)$ minimizes discrepancy between

- output \hat{y} that would be observed, with input u and initial state $x(0)$ (and no sensor noise), and
- output y that was observed,
measured as $\sum_{\tau=0}^{t-1}\|\hat{y}(\tau)-y(\tau)\|^{2}$
can express least-squares initial state estimate as

$$
\hat{x}_{\mathrm{ls}}(0)=\left(\sum_{\tau=0}^{t-1}\left(A^{T}\right)^{\tau} C^{T} C A^{\tau}\right)^{-1} \sum_{\tau=0}^{t-1}\left(A^{T}\right)^{\tau} C^{T} \tilde{y}(\tau)
$$

where \tilde{y} is observed output with portion due to input subtracted: $\tilde{y}=y-h * u$ where h is impulse response

Least-squares observer uncertainty ellipsoid

since $\mathcal{O}_{t}^{\dagger} \mathcal{O}_{t}=I$, we have

$$
\tilde{x}(0)=\hat{x}_{1 \mathrm{~s}}(0)-x(0)=\mathcal{O}_{t}^{\dagger}\left[\begin{array}{c}
v(0) \\
\vdots \\
v(t-1)
\end{array}\right]
$$

where $\tilde{x}(0)$ is the estimation error of the initial state
in particular, $\hat{x}_{15}(0)=x(0)$ if sensor noise is zero
(i.e., observer recovers exact state in noiseless case)
now assume sensor noise is unknown, but has RMS value $\leq \alpha$,

$$
\frac{1}{t} \sum_{\tau=0}^{t-1}\|v(\tau)\|^{2} \leq \alpha^{2}
$$

set of possible estimation errors is ellipsoid

$$
\tilde{x}(0) \in \mathcal{E}_{\mathrm{unc}}=\left\{\left.\mathcal{O}_{t}^{\dagger}\left[\begin{array}{c}
v(0) \\
\vdots \\
v(t-1)
\end{array}\right] \right\rvert\, \frac{1}{t} \sum_{\tau=0}^{t-1}\|v(\tau)\|^{2} \leq \alpha^{2}\right\}
$$

$\mathcal{E}_{\text {unc }}$ is 'uncertainty ellipsoid' for $x(0)$ (least-square gives best $\mathcal{E}_{\text {unc }}$) shape of uncertainty ellipsoid determined by matrix

$$
\left(\mathcal{O}_{t}^{T} \mathcal{O}_{t}\right)^{-1}=\left(\sum_{\tau=0}^{t-1}\left(A^{T}\right)^{\tau} C^{T} C A^{\tau}\right)^{-1}
$$

maximum norm of error is

$$
\left\|\hat{x}_{1 \mathrm{~s}}(0)-x(0)\right\| \leq \alpha \sqrt{t}\left\|\mathcal{O}_{t}^{\dagger}\right\|
$$

Infinite horizon uncertainty ellipsoid

the matrix

$$
P=\lim _{t \rightarrow \infty}\left(\sum_{\tau=0}^{t-1}\left(A^{T}\right)^{\tau} C^{T} C A^{\tau}\right)^{-1}
$$

always exists, and gives the limiting uncertainty in estimating $x(0)$ from u, y over longer and longer periods:

- if A is stable, $P>0$
i.e., can't estimate initial state perfectly even with infinite number of measurements $u(t), y(t), t=0, \ldots$ (since memory of $x(0)$ fades \ldots)
- if A is not stable, then P can have nonzero nullspace
i.e., initial state estimation error gets arbitrarily small (at least in some directions) as more and more of signals u and y are observed

Continuous-time least-squares state estimation

assume $\dot{x}=A x+B u, y=C x+D u+v$ is observable
least-squares estimate of initial state $x(0)$, given $u(\tau), y(\tau), 0 \leq \tau \leq t$: choose $\hat{x}_{1 s}(0)$ to minimize integral square residual

$$
J=\int_{0}^{t}\left\|\tilde{y}(\tau)-C e^{\tau A} x(0)\right\|^{2} d \tau
$$

where $\tilde{y}=y-h * u$ is observed output minus part due to input let's expand as $J=x(0)^{T} Q x(0)+2 r^{T} x(0)+s$,

$$
\begin{gathered}
Q=\int_{0}^{t} e^{\tau A^{T}} C^{T} C e^{\tau A} d \tau, \quad r=\int_{0}^{t} e^{\tau A^{T}} C^{T} \tilde{y}(\tau) d \tau \\
q=\int_{0}^{t} \tilde{y}(\tau)^{T} \tilde{y}(\tau) d \tau
\end{gathered}
$$

setting $\nabla_{x(0)} J$ to zero, we obtain the least-squares observer

$$
\hat{x}_{\mathrm{ls}}(0)=Q^{-1} r=\left(\int_{0}^{t} e^{\tau A^{T}} C^{T} C e^{\tau A} d \tau\right)^{-1} \int_{0}^{t} e^{A^{T} \tau} C^{T} \tilde{y}(\tau) d \tau
$$

estimation error is

$$
\tilde{x}(0)=\hat{x}_{\mathrm{ls}}(0)-x(0)=\left(\int_{0}^{t} e^{\tau A^{T}} C^{T} C e^{\tau A} d \tau\right)^{-1} \int_{0}^{t} e^{\tau A^{T}} C^{T} v(\tau) d \tau
$$

therefore if $v=0$ then $\hat{x}_{1 \mathrm{~s}}(0)=x(0)$

System Identification* *partial, discreet time, as LTI

- Given examples $\left\{\mathbf{x}_{i}, \mathbf{y}_{i}\right\}_{i=1}^{N}$ we want to model the relation between \mathbf{x}_{i} and \mathbf{y}_{i} as $\mathbf{y}_{i} \approx A \mathbf{x}_{i}$. Define the estimation problem as:

$$
\arg \min _{\mathbf{A}} \sum_{i=1}^{N}\left\|\mathbf{y}_{i}-\mathbf{A} \mathbf{x}_{i}\right\|^{2}=\sum_{i=1}^{N} \mathbf{x}_{i}^{\prime} \mathbf{A}^{\prime} \mathbf{A} \mathbf{x}_{i}-2 \mathbf{y}_{i}^{\prime} \mathbf{A} \mathbf{x}_{i}+\mathbf{y}_{i}^{\prime} \mathbf{y}_{i}
$$

- we differentiate w.r.t. A and set to 0

$$
\begin{aligned}
\frac{\partial}{\partial \mathbf{A}} \sum_{i=1}^{N}\left\|\mathbf{y}_{i}-\mathbf{A} \mathbf{x}_{i}\right\|^{2} & =0 \\
\sum_{i=1}^{N} 2 \mathbf{A} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}-2 \mathbf{y}_{i} \mathbf{x}_{i}^{\prime} & =0 \\
\mathbf{A} \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime} & =\sum_{i=1}^{N} \mathbf{y}_{i} \mathbf{x}_{i}^{\prime}
\end{aligned}
$$

$$
\mathbf{A} \sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}=\sum_{i=1}^{N} \mathbf{y}_{i} \mathbf{x}_{i}^{\prime}
$$

- If rank of $\sum_{i=1}^{N} \mathbf{x}_{i} \mathrm{x}_{i}^{\prime}$ is full rank (requires $\mathrm{N}>n$) then

$$
\mathbf{A}=\left(\sum_{i=1}^{N} \mathbf{y}_{i} \mathbf{x}_{i}^{\prime}\right)\left(\sum_{i=1}^{N} \mathbf{x}_{i} \mathbf{x}_{i}^{\prime}\right)^{-1}
$$

- E.g. we'd like to estimate \mathbf{A} in system: $\mathbf{x}_{t+1}=\mathbf{A} \mathbf{x}_{t}+\omega$ (ω is noise). To solve, simply replace \mathbf{y}_{i} with \mathbf{x}_{i+1} in above solution.
- Note that this would also be the most likely \mathbf{A} if ω were Gaussian noise with zero mean and unit variance.

- Left: Phase plane, values of \mathbf{x}_{t} where $\omega \sim N(\mathbf{0}, \mathbf{I})$
- Right: Squared error between true and estimated \mathbf{A} as function of step number. error $=\sum_{i, j}\left(\mathbf{A}_{i j}-\hat{\mathbf{A}}_{i j}\right)^{2}$ is called the Frobenius norm.

Lecture 6
 Estimation

- Gaussian random vectors
- minimum mean-square estimation (MMSE)
- MMSE with linear measurements
- relation to least-squares, pseudo-inverse

Gaussian random vectors

random vector $x \in \mathbf{R}^{n}$ is Gaussian if it has density

$$
p_{x}(v)=(2 \pi)^{-n / 2}(\operatorname{det} \Sigma)^{-1 / 2} \exp \left(-\frac{1}{2}(v-\bar{x})^{T} \Sigma^{-1}(v-\bar{x})\right)
$$

for some $\Sigma=\Sigma^{T}>0, \bar{x} \in \mathbf{R}^{n}$

- denoted $x \sim \mathcal{N}(\bar{x}, \Sigma)$
- $\bar{x} \in \mathbf{R}^{n}$ is the mean or expected value of x, i.e.,

$$
\bar{x}=\mathbf{E} x=\int v p_{x}(v) d v
$$

- $\Sigma=\Sigma^{T}>0$ is the covariance matrix of x, i.e.,

$$
\Sigma=\mathbf{E}(x-\bar{x})(x-\bar{x})^{T}
$$

$$
\begin{aligned}
& =\mathbf{E} x x^{T}-\bar{x} \bar{x}^{T} \\
& =\int(v-\bar{x})(v-\bar{x})^{T} p_{x}(v) d v
\end{aligned}
$$

density for $x \sim \mathcal{N}(0,1)$:

- mean and variance of scalar random variable x_{i} are

$$
\mathbf{E} x_{i}=\bar{x}_{i}, \quad \mathbf{E}\left(x_{i}-\bar{x}_{i}\right)^{2}=\Sigma_{i i}
$$

hence standard deviation of x_{i} is $\sqrt{\Sigma_{i i}}$

- covariance between x_{i} and x_{j} is $\mathbf{E}\left(x_{i}-\bar{x}_{i}\right)\left(x_{j}-\bar{x}_{j}\right)=\Sigma_{i j}$
- correlation coefficient between x_{i} and x_{j} is $\rho_{i j}=\frac{\Sigma_{i j}}{\sqrt{\Sigma_{i i} \Sigma_{j j}}}$
- mean (norm) square deviation of x from \bar{x} is

$$
\mathbf{E}\|x-\bar{x}\|^{2}=\mathbf{E} \operatorname{Tr}(x-\bar{x})(x-\bar{x})^{T}=\operatorname{Tr} \Sigma=\sum_{i=1}^{n} \Sigma_{i i}
$$

(using $\operatorname{Tr} A B=\operatorname{Tr} B A$)
example: $x \sim \mathcal{N}(0, I)$ means x_{i} are independent identically distributed (IID) $\mathcal{N}(0,1)$ random variables

Confidence ellipsoids

$p_{x}(v)$ is constant for $(v-\bar{x})^{T} \Sigma^{-1}(v-\bar{x})=\alpha$, i.e., on the surface of ellipsoid

$$
\mathcal{E}_{\alpha}=\left\{v \mid(v-\bar{x})^{T} \Sigma^{-1}(v-\bar{x}) \leq \alpha\right\}
$$

thus \bar{x} and Σ determine shape of density
can interpret \mathcal{E}_{α} as confidence ellipsoid for x :
the nonnegative random variable $(x-\bar{x})^{T} \Sigma^{-1}(x-\bar{x})$ has a χ_{n}^{2} distribution, so $\operatorname{Prob}\left(x \in \mathcal{E}_{\alpha}\right)=F_{\chi_{n}^{2}}(\alpha)$ where $F_{\chi_{n}^{2}}$ is the CDF some good approximations:

- \mathcal{E}_{n} gives about 50% probability
- $\mathcal{E}_{n+2 \sqrt{n}}$ gives about 90% probability
geometrically:
- mean \bar{x} gives center of ellipsoid
- semiaxes are $\sqrt{\alpha \lambda_{i}} u_{i}$, where u_{i} are (orthonormal) eigenvectors of Σ with eigenvalues λ_{i}
example: $x \sim \mathcal{N}(\bar{x}, \Sigma)$ with $\bar{x}=\left[\begin{array}{l}2 \\ 1\end{array}\right], \Sigma=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$
- x_{1} has mean 2 , std. dev. $\sqrt{2}$
- x_{2} has mean 1 , std. dev. 1
- correlation coefficient between x_{1} and x_{2} is $\rho=1 / \sqrt{2}$
- $\mathbf{E}\|x-\bar{x}\|^{2}=3$
90% confidence ellipsoid corresponds to $\alpha=4.6$:

(here, 91 out of 100 fall in $\mathcal{E}_{4.6}$)

Affine transformation

suppose $x \sim \mathcal{N}\left(\bar{x}, \Sigma_{x}\right)$
consider affine transformation of x :

$$
z=A x+b,
$$

where $A \in \mathbf{R}^{m \times n}, b \in \mathbf{R}^{m}$
then z is Gaussian, with mean

$$
\mathbf{E} z=\mathbf{E}(A x+b)=A \mathbf{E} x+b=A \bar{x}+b
$$

and covariance

$$
\begin{aligned}
\Sigma_{z} & =\mathbf{E}(z-\bar{z})(z-\bar{z})^{T} \\
& =\mathbf{E} A(x-\bar{x})(x-\bar{x})^{T} A^{T} \\
& =A \Sigma_{x} A^{T}
\end{aligned}
$$

examples:

- if $w \sim \mathcal{N}(0, I)$ then $x=\Sigma^{1 / 2} w+\bar{x}$ is $\mathcal{N}(\bar{x}, \Sigma)$
useful for simulating vectors with given mean and covariance
- conversely, if $x \sim \mathcal{N}(\bar{x}, \Sigma)$ then $z=\Sigma^{-1 / 2}(x-\bar{x})$ is $\mathcal{N}(0, I)$ (normalizes \& decorrelates)
suppose $x \sim \mathcal{N}(\bar{x}, \Sigma)$ and $c \in \mathbf{R}^{n}$
scalar $c^{T} x$ has mean $c^{T} \bar{x}$ and variance $c^{T} \Sigma c$
thus (unit length) direction of minimum variability for x is u, where

$$
\Sigma u=\lambda_{\min } u, \quad\|u\|=1
$$

standard deviation of $u_{n}^{T} x$ is $\sqrt{\lambda_{\text {min }}}$
(similarly for maximum variability)

Degenerate Gaussian vectors

it is convenient to allow Σ to be singular (but still $\Sigma=\Sigma^{T} \geq 0$)
(in this case density formula obviously does not hold) meaning: in some directions x is not random at all write Σ as

$$
\Sigma=\left[Q_{+} Q_{0}\right]\left[\begin{array}{cc}
\Sigma_{+} & 0 \\
0 & 0
\end{array}\right]\left[Q_{+} Q_{0}\right]^{T}
$$

where $Q=\left[Q_{+} Q_{0}\right]$ is orthogonal, $\Sigma_{+}>0$

- columns of Q_{0} are orthonormal basis for $\mathcal{N}(\Sigma)$
- columns of Q_{+}are orthonormal basis for range (Σ)
then $Q^{T} x=\left[z^{T} w^{T}\right]^{T}$, where
- $z \sim \mathcal{N}\left(Q_{+}^{T} \bar{x}, \Sigma_{+}\right)$is (nondegenerate) Gaussian (hence, density formula holds)
- $w=Q_{0}^{T} \bar{x} \in \mathbf{R}^{n}$ is not random
($Q_{0}^{T} x$ is called deterministic component of x)

Linear measurements

linear measurements with noise:

$$
y=A x+v
$$

- $x \in \mathbf{R}^{n}$ is what we want to measure or estimate
- $y \in \mathbf{R}^{m}$ is measurement
- $A \in \mathbf{R}^{m \times n}$ characterizes sensors or measurements
- v is sensor noise
common assumptions:
- $x \sim \mathcal{N}\left(\bar{x}, \Sigma_{x}\right)$
- $v \sim \mathcal{N}\left(\bar{v}, \Sigma_{v}\right)$
- x and v are independent
- $\mathcal{N}\left(\bar{x}, \Sigma_{x}\right)$ is the prior distribution of x (describes initial uncertainty about x)
- \bar{v} is noise bias or offset (and is usually 0)
- Σ_{v} is noise covariance
thus

$$
\left[\begin{array}{l}
x \\
v
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{c}
\bar{x} \\
\bar{v}
\end{array}\right],\left[\begin{array}{cc}
\Sigma_{x} & 0 \\
0 & \Sigma_{v}
\end{array}\right]\right)
$$

using

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{ll}
I & 0 \\
A & I
\end{array}\right]\left[\begin{array}{l}
x \\
v
\end{array}\right]
$$

we can write

$$
\mathbf{E}\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
\bar{x} \\
A \bar{x}+\bar{v}
\end{array}\right]
$$

and

$$
\begin{aligned}
\mathbf{E}\left[\begin{array}{l}
x-\bar{x} \\
y-\bar{y}
\end{array}\right]\left[\begin{array}{l}
x-\bar{x} \\
y-\bar{y}
\end{array}\right]^{T} & =\left[\begin{array}{cc}
I & 0 \\
A & I
\end{array}\right]\left[\begin{array}{cc}
\Sigma_{x} & 0 \\
0 & \Sigma_{v}
\end{array}\right]\left[\begin{array}{ll}
I & 0 \\
A & I
\end{array}\right]^{T} \\
& =\left[\begin{array}{cc}
\Sigma_{x} & \Sigma_{x} A^{T} \\
A \Sigma_{x} & A \Sigma_{x} A^{T}+\Sigma_{v}
\end{array}\right]
\end{aligned}
$$

covariance of measurement y is $A \Sigma_{x} A^{T}+\Sigma_{v}$

- $A \Sigma_{x} A^{T}$ is 'signal covariance'
- Σ_{v} is 'noise covariance'

Minimum mean-square estimation

suppose $x \in \mathbf{R}^{n}$ and $y \in \mathbf{R}^{m}$ are random vectors (not necessarily Gaussian) we seek to estimate x given y
thus we seek a function $\phi: \mathbf{R}^{m} \rightarrow \mathbf{R}^{n}$ such that $\hat{x}=\phi(y)$ is near x one common measure of nearness: mean-square error,

$$
\mathbf{E}\|\phi(y)-x\|^{2}
$$

minimum mean-square estimator (MMSE) $\phi_{\text {mmse }}$ minimizes this quantity general solution: $\phi_{\text {mmse }}(y)=\mathbf{E}(x \mid y)$, i.e., the conditional expectation of x given y

MMSE for Gaussian vectors

now suppose $x \in \mathbf{R}^{n}$ and $y \in \mathbf{R}^{m}$ are jointly Gaussian:

$$
\left[\begin{array}{l}
x \\
y
\end{array}\right] \sim \mathcal{N}\left(\left[\begin{array}{c}
\bar{x} \\
\bar{y}
\end{array}\right],\left[\begin{array}{cc}
\Sigma_{x} & \Sigma_{x y} \\
\Sigma_{x y}^{T} & \Sigma_{y}
\end{array}\right]\right)
$$

(after alot of algebra) the conditional density is

$$
p_{x \mid y}(v \mid y)=(2 \pi)^{-n / 2}(\operatorname{det} \Lambda)^{-1 / 2} \exp \left(-\frac{1}{2}(v-w)^{T} \Lambda^{-1}(v-w)\right)
$$

where

$$
\Lambda=\Sigma_{x}-\Sigma_{x y} \Sigma_{y}^{-1} \Sigma_{x y}^{T}, \quad w=\bar{x}+\Sigma_{x y} \Sigma_{y}^{-1}(y-\bar{y})
$$

hence MMSE estimator (i.e., conditional expectation) is

$$
\hat{x}=\phi_{\mathrm{mmse}}(y)=\mathbf{E}(x \mid y)=\bar{x}+\Sigma_{x y} \Sigma_{y}^{-1}(y-\bar{y})
$$

$\phi_{\text {mmse }}$ is an affine function
MMSE estimation error, $\hat{x}-x$, is a Gaussian random vector

$$
\hat{x}-x \sim \mathcal{N}\left(0, \Sigma_{x}-\Sigma_{x y} \Sigma_{y}^{-1} \Sigma_{x y}^{T}\right)
$$

note that

$$
\Sigma_{x}-\Sigma_{x y} \Sigma_{y}^{-1} \Sigma_{x y}^{T} \leq \Sigma_{x}
$$

i.e., covariance of estimation error is always less than prior covariance of x

Best linear unbiased estimator

estimator

$$
\hat{x}=\phi_{\mathrm{blu}}(y)=\bar{x}+\Sigma_{x y} \Sigma_{y}^{-1}(y-\bar{y})
$$

makes sense when x, y aren't jointly Gaussian
this estimator

- is unbiased, i.e., $\mathbf{E} \hat{x}=\mathbf{E} x$
- often works well
- is widely used
- has minimum mean square error among all affine estimators
sometimes called best linear unbiased estimator

MMSE with linear measurements

consider specific case

$$
y=A x+v, \quad x \sim \mathcal{N}\left(\bar{x}, \Sigma_{x}\right), \quad v \sim \mathcal{N}\left(\bar{v}, \Sigma_{v}\right)
$$

x, v independent
MMSE of x given y is affine function

$$
\hat{x}=\bar{x}+B(y-\bar{y})
$$

where $B=\Sigma_{x} A^{T}\left(A \Sigma_{x} A^{T}+\Sigma_{v}\right)^{-1}, \bar{y}=A \bar{x}+\bar{v}$

intepretation:

- \bar{x} is our best prior guess of x (before measurement)
- $y-\bar{y}$ is the discrepancy between what we actually measure (y) and the expected value of what we measure (\bar{y})
- estimator modifies prior guess by B times this discrepancy
- estimator blends prior information with measurement
- B gives gain from observed discrepancy to estimate
- B is small if noise term Σ_{v} in 'denominator' is large

MMSE error with linear measurements

MMSE estimation error, $\tilde{x}=\hat{x}-x$, is Gaussian with zero mean and covariance

$$
\Sigma_{\text {est }}=\Sigma_{x}-\Sigma_{x} A^{T}\left(A \Sigma_{x} A^{T}+\Sigma_{v}\right)^{-1} A \Sigma_{x}
$$

- $\Sigma_{\text {est }} \leq \Sigma_{x}$, i.e., measurement always decreases uncertainty about x
- difference $\Sigma_{x}-\Sigma_{\text {est }}$ gives value of measurement y in estimating x
- e.g., $\left(\Sigma_{\text {est } i i} / \Sigma_{x i i}\right)^{1 / 2}$ gives fractional decrease in uncertainty of x_{i} due to measurement
note: error covariance $\Sigma_{\text {est }}$ can be determined before measurement y is made!
to evaluate $\Sigma_{\text {est }}$, only need to know
- A (which characterizes sensors)
- prior covariance of $x\left(\right.$ i.e., $\left.\Sigma_{x}\right)$
- noise covariance (i.e., Σ_{v})
you do not need to know the measurement y (or the means \bar{x}, \bar{v}) useful for experiment design or sensor selection

