
General pseudo-inverse

if A has SVD A = UΣV T ,

A† = V Σ−1UT

is the pseudo-inverse or Moore-Penrose inverse of A

if A is skinny and full rank,

A† = (ATA)−1AT

gives the least-squares solution xls = A†y

if A is fat and full rank,

A† = AT (AAT )−1

gives the least-norm solution xln = A†y
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Full SVD

SVD of A ∈ Rm×n with Rank(A) = r:

A = U1Σ1V
T
1 =

[

u1 · · · ur

]





σ1
. . .

σr









vT
1
...

vT
r





• find U2 ∈ Rm×(m−r), V2 ∈ Rn×(n−r) s.t. U = [U1 U2] ∈ Rm×m and
V = [V1 V2] ∈ Rn×n are orthogonal

• add zero rows/cols to Σ1 to form Σ ∈ Rm×n:

Σ =

[

Σ1 0r×(n − r)
0(m − r)×r 0(m − r)×(n − r)

]
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then we have

A = U1Σ1V
T
1 =

[

U1 U2

]

[

Σ1 0r×(n − r)
0(m − r)×r 0(m − r)×(n − r)

]

[

V T
1

V T
2

]

i.e.:
A = UΣV T

called full SVD of A

(SVD with positive singular values only called compact SVD)
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Image of unit ball under linear transformation

full SVD:
A = UΣV T

gives intepretation of y = Ax:

• rotate (by V T )

• stretch along axes by σi (σi = 0 for i > r)

• zero-pad (if m > n) or truncate (if m < n) to get m-vector

• rotate (by U)
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Image of unit ball under A

rotate by V T

stretch, Σ = diag(2, 0.5)

u1u2 rotate by U

1

1

1

1

2

0.5

{Ax | ‖x‖ ≤ 1} is ellipsoid with principal axes σiui.
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Sensitivity of linear equations to data error

consider y = Ax, A ∈ Rn×n invertible; of course x = A−1y

suppose we have an error or noise in y, i.e., y becomes y + δy

then x becomes x + δx with δx = A−1δy

hence we have ‖δx‖ = ‖A−1δy‖ ≤ ‖A−1‖‖δy‖

if ‖A−1‖ is large,

• small errors in y can lead to large errors in x

• can’t solve for x given y (with small errors)

• hence, A can be considered singular in practice
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a more refined analysis uses relative instead of absolute errors in x and y

since y = Ax, we also have ‖y‖ ≤ ‖A‖‖x‖, hence

‖δx‖

‖x‖
≤ ‖A‖‖A−1‖

‖δy‖

‖y‖

κ(A) = ‖A‖‖A−1‖ = σmax(A)/σmin(A)

is called the condition number of A

we have:

relative error in solution x ≤ condition number · relative error in data y

or, in terms of # bits of guaranteed accuracy:

# bits accuacy in solution ≈ # bits accuracy in data − log2 κ
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we say

• A is well conditioned if κ is small

• A is poorly conditioned if κ is large

(definition of ‘small’ and ‘large’ depend on application)

same analysis holds for least-squares solutions with A nonsquare,
κ = σmax(A)/σmin(A)
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State estimation set up

we consider the discrete-time system

x(t + 1) = Ax(t) + Bu(t) + w(t), y(t) = Cx(t) + Du(t) + v(t)

• w is state disturbance or noise

• v is sensor noise or error

• A, B, C, and D are known

• u and y are observed over time interval [0, t − 1]

• w and v are not known, but can be described statistically, or assumed
small (e.g., in RMS value)

Observability and state estimation 19–2



State estimation problem

state estimation problem: estimate x(s) from

u(0), . . . , u(t − 1), y(0), . . . , y(t − 1)

• s = 0: estimate initial state

• s = t − 1: estimate current state

• s = t: estimate (i.e., predict) next state

an algorithm or system that yields an estimate x̂(s) is called an observer or
state estimator

x̂(s) is denoted x̂(s|t − 1) to show what information estimate is based on
(read, “x̂(s) given t − 1”)
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Noiseless case

let’s look at finding x(0), with no state or measurement noise:

x(t + 1) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t)

with x(t) ∈ Rn, u(t) ∈ Rm, y(t) ∈ Rp

then we have





y(0)
...

y(t − 1)



 = Otx(0) + Tt





u(0)
...

u(t − 1)
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where

Ot =









C
CA
...

CAt−1









, Tt =









D 0 · · ·
CB D 0 · · ·
...

CAt−2B CAt−3B · · · CB D









• Ot maps initials state into resulting output over [0, t − 1]

• Tt maps input to output over [0, t − 1]

hence we have

Otx(0) =





y(0)
...

y(t − 1)



 − Tt





u(0)
...

u(t − 1)





RHS is known, x(0) is to be determined
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hence:

• can uniquely determine x(0) if and only if N (Ot) = {0}

• N (Ot) gives ambiguity in determining x(0)

• if x(0) ∈ N (Ot) and u = 0, output is zero over interval [0, t − 1]

• input u does not affect ability to determine x(0);
its effect can be subtracted out
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Observability matrix

by C-H theorem, each Ak is linear combination of A0, . . . , An−1

hence for t ≥ n, N (Ot) = N (O) where

O = On =









C
CA
...

CAn−1









is called the observability matrix

if x(0) can be deduced from u and y over [0, t − 1] for any t, then x(0)
can be deduced from u and y over [0, n − 1]

N (O) is called unobservable subspace; describes ambiguity in determining
state from input and output

system is called observable if N (O) = {0}, i.e., Rank(O) = n
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Observers for noiseless case

suppose Rank(Ot) = n (i.e., system is observable) and let F be any left
inverse of Ot, i.e., FOt = I

then we have the observer

x(0) = F









y(0)
...

y(t − 1)



 − Tt





u(0)
...

u(t − 1)









which deduces x(0) (exactly) from u, y over [0, t − 1]

in fact we have

x(τ − t + 1) = F









y(τ − t + 1)
...

y(τ)



 − Tt





u(τ − t + 1)
...

u(τ)
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i.e., our observer estimates what state was t − 1 epochs ago, given past
t − 1 inputs & outputs

observer is (multi-input, multi-output) finite impulse response (FIR) filter,
with inputs u and y, and output x̂
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Invariance of unobservable set

fact: the unobservable subspace N (O) is invariant, i.e., if z ∈ N (O),
then Az ∈ N (O)

proof: suppose z ∈ N (O), i.e., CAkz = 0 for k = 0, . . . , n − 1

evidently CAk(Az) = 0 for k = 0, . . . , n − 2;

CAn−1(Az) = CAnz = −
n−1
∑

i=0

αiCAiz = 0

(by C-H) where

det(sI − A) = sn + αn−1s
n−1 + · · · + α0
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Continuous-time observability

continuous-time system with no sensor or state noise:

ẋ = Ax + Bu, y = Cx + Du

can we deduce state x from u and y?

let’s look at derivatives of y:

y = Cx + Du

ẏ = Cẋ + Du̇ = CAx + CBu + Du̇

ÿ = CA2x + CABu + CBu̇ + Dü

and so on
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hence we have








y
ẏ
...

y(n−1)









= Ox + T









u
u̇
...

u(n−1)









where O is the observability matrix and

T =









D 0 · · ·
CB D 0 · · ·
...

CAn−2B CAn−3B · · · CB D









(same matrices we encountered in discrete-time case!)
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rewrite as

Ox =









y
ẏ
...

y(n−1)









− T









u
u̇
...

u(n−1)









RHS is known; x is to be determined

hence if N (O) = {0} we can deduce x(t) from derivatives of u(t), y(t) up
to order n − 1

in this case we say system is observable

can construct an observer using any left inverse F of O:

x = F

















y
ẏ
...

y(n−1)









− T









u
u̇
...

u(n−1)
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• reconstructs x(t) (exactly and instantaneously) from

u(t), . . . , u(n−1)(t), y(t), . . . , y(n−1)(t)

• derivative-based state reconstruction is dual of state transfer using
impulsive inputs
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A converse

suppose z ∈ N (O) (the unobservable subspace), and u is any input, with
x, y the corresponding state and output, i.e.,

ẋ = Ax + Bu, y = Cx + Du

then state trajectory x̃ = x + etAz satisfies

˙̃x = Ax̃ + Bu, y = Cx̃ + Du

i.e., input/output signals u, y consistent with both state trajectories x, x̃

hence if system is unobservable, no signal processing of any kind applied to
u and y can deduce x

unobservable subspace N (O) gives fundamental ambiguity in deducing x
from u, y
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Least-squares observers

discrete-time system, with sensor noise:

x(t + 1) = Ax(t) + Bu(t), y(t) = Cx(t) + Du(t) + v(t)

we assume Rank(Ot) = n (hence, system is observable)

least-squares observer uses pseudo-inverse:

x̂(0) = O†
t









y(0)
...

y(t − 1)



 − Tt





u(0)
...

u(t − 1)









where O†
t =

(

OT
t Ot

)−1OT
t
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interpretation: x̂ls(0) minimizes discrepancy between

• output ŷ that would be observed, with input u and initial state x(0)
(and no sensor noise), and

• output y that was observed,

measured as
t−1
∑

τ=0

‖ŷ(τ) − y(τ)‖2

can express least-squares initial state estimate as

x̂ls(0) =

(

t−1
∑

τ=0

(AT )τCTCAτ

)−1 t−1
∑

τ=0

(AT )τCT ỹ(τ)

where ỹ is observed output with portion due to input subtracted:
ỹ = y − h ∗ u where h is impulse response

Observability and state estimation 19–19



Least-squares observer uncertainty ellipsoid

since O†
tOt = I, we have

x̃(0) = x̂ls(0) − x(0) = O†
t





v(0)
...

v(t − 1)





where x̃(0) is the estimation error of the initial state

in particular, x̂ls(0) = x(0) if sensor noise is zero
(i.e., observer recovers exact state in noiseless case)

now assume sensor noise is unknown, but has RMS value ≤ α,

1

t

t−1
∑

τ=0

‖v(τ)‖2 ≤ α2
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set of possible estimation errors is ellipsoid

x̃(0) ∈ Eunc =







O†
t





v(0)
...

v(t − 1)





∣

∣

∣

∣

∣

∣

1

t

t−1
∑

τ=0

‖v(τ)‖2 ≤ α2







Eunc is ‘uncertainty ellipsoid’ for x(0) (least-square gives best Eunc)

shape of uncertainty ellipsoid determined by matrix

(

OT
t Ot

)−1
=

(

t−1
∑

τ=0

(AT )τCTCAτ

)−1

maximum norm of error is

‖x̂ls(0) − x(0)‖ ≤ α
√

t‖O†
t‖
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Infinite horizon uncertainty ellipsoid

the matrix

P = lim
t→∞

(

t−1
∑

τ=0

(AT )τCTCAτ

)−1

always exists, and gives the limiting uncertainty in estimating x(0) from u,
y over longer and longer periods:

• if A is stable, P > 0
i.e., can’t estimate initial state perfectly even with infinite number of
measurements u(t), y(t), t = 0, . . . (since memory of x(0) fades . . . )

• if A is not stable, then P can have nonzero nullspace
i.e., initial state estimation error gets arbitrarily small (at least in some
directions) as more and more of signals u and y are observed
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Continuous-time least-squares state estimation

assume ẋ = Ax + Bu, y = Cx + Du + v is observable

least-squares estimate of initial state x(0), given u(τ), y(τ), 0 ≤ τ ≤ t:
choose x̂ls(0) to minimize integral square residual

J =

∫ t

0

∥

∥ỹ(τ) − CeτAx(0)
∥

∥

2
dτ

where ỹ = y − h ∗ u is observed output minus part due to input

let’s expand as J = x(0)TQx(0) + 2rTx(0) + s,

Q =

∫ t

0
eτAT

CTCeτA dτ, r =

∫ t

0
eτAT

CT ỹ(τ) dτ,

q =

∫ t

0
ỹ(τ)T ỹ(τ) dτ
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setting ∇x(0)J to zero, we obtain the least-squares observer

x̂ls(0) = Q−1r =

(
∫ t

0
eτAT

CTCeτA dτ

)−1 ∫ t

0
eAT τCT ỹ(τ) dτ

estimation error is

x̃(0) = x̂ls(0) − x(0) =

(
∫ t

0
eτAT

CTCeτA dτ

)−1 ∫ t

0
eτAT

CTv(τ) dτ

therefore if v = 0 then x̂ls(0) = x(0)
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• Given examples                    we want to model the relation between xi 
and yi as yi ! Axi. Define the estimation problem as:

• we differentiate w.r.t. A and set to 0
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• If rank of                    is full rank (requires N > n) then

• E.g. we’d like to estimate A in system: xt+1 = Axt + ! (! is noise).
To solve, simply replace yi with xi+1 in above solution .

• Note that this would also be the most likely A if ! were Gaussian noise 
with zero mean and unit variance.
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• Left: Phase plane, values of xt where !~N(0,I) 

• Right: Squared error between true and estimated A as function of step 
number. error = "i,j(Aij-Âij)2 is called the Frobenius norm.
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Lecture 6

Estimation

• Gaussian random vectors

• minimum mean-square estimation (MMSE)

• MMSE with linear measurements

• relation to least-squares, pseudo-inverse
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Gaussian random vectors

random vector x ∈ Rn is Gaussian if it has density

px(v) = (2π)−n/2(detΣ)−1/2 exp

(

−1

2
(v − x̄)TΣ−1(v − x̄)

)

,

for some Σ = ΣT > 0, x̄ ∈ Rn

• denoted x ∼ N (x̄,Σ)

• x̄ ∈ Rn is the mean or expected value of x, i.e.,

x̄ = Ex =

∫

vpx(v)dv

• Σ = ΣT > 0 is the covariance matrix of x, i.e.,

Σ = E(x − x̄)(x − x̄)T

Estimation 6–2



= ExxT − x̄x̄T

=

∫

(v − x̄)(v − x̄)Tpx(v)dv

density for x ∼ N (0, 1):
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• mean and variance of scalar random variable xi are

Exi = x̄i, E(xi − x̄i)
2 = Σii

hence standard deviation of xi is
√

Σii

• covariance between xi and xj is E(xi − x̄i)(xj − x̄j) = Σij

• correlation coefficient between xi and xj is ρij =
Σij

√

ΣiiΣjj

• mean (norm) square deviation of x from x̄ is

E ‖x − x̄‖2 = ETr(x − x̄)(x − x̄)T = TrΣ =
n

∑

i=1

Σii

(using TrAB = TrBA)

example: x ∼ N (0, I) means xi are independent identically distributed
(IID) N (0, 1) random variables
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Confidence ellipsoids

px(v) is constant for (v − x̄)TΣ−1(v − x̄) = α, i.e., on the surface of
ellipsoid

Eα = {v | (v − x̄)TΣ−1(v − x̄) ≤ α}

thus x̄ and Σ determine shape of density

can interpret Eα as confidence ellipsoid for x:

the nonnegative random variable (x − x̄)TΣ−1(x − x̄) has a χ2
n

distribution, so Prob(x ∈ Eα) = Fχ2
n
(α) where Fχ2

n
is the CDF

some good approximations:

• En gives about 50% probability

• En+2
√

n gives about 90% probability
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geometrically:

• mean x̄ gives center of ellipsoid

• semiaxes are
√

αλiui, where ui are (orthonormal) eigenvectors of Σ
with eigenvalues λi
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example: x ∼ N (x̄,Σ) with x̄ =

[

2
1

]

, Σ =

[

2 1
1 1

]

• x1 has mean 2, std. dev.
√

2

• x2 has mean 1, std. dev. 1

• correlation coefficient between x1 and x2 is ρ = 1/
√

2

• E ‖x − x̄‖2 = 3

90% confidence ellipsoid corresponds to α = 4.6:
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(here, 91 out of 100 fall in E4.6)
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Affine transformation

suppose x ∼ N (x̄,Σx)

consider affine transformation of x:

z = Ax + b,

where A ∈ Rm×n, b ∈ Rm

then z is Gaussian, with mean

E z = E(Ax + b) = AEx + b = Ax̄ + b

and covariance

Σz = E(z − z̄)(z − z̄)T

= EA(x − x̄)(x − x̄)TAT

= AΣxAT
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examples:

• if w ∼ N (0, I) then x = Σ1/2w + x̄ is N (x̄,Σ)

useful for simulating vectors with given mean and covariance

• conversely, if x ∼ N (x̄,Σ) then z = Σ−1/2(x − x̄) is N (0, I)

(normalizes & decorrelates)
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suppose x ∼ N (x̄,Σ) and c ∈ Rn

scalar cTx has mean cT x̄ and variance cTΣc

thus (unit length) direction of minimum variability for x is u, where

Σu = λminu, ‖u‖ = 1

standard deviation of uT
nx is

√
λmin

(similarly for maximum variability)
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Degenerate Gaussian vectors

it is convenient to allow Σ to be singular (but still Σ = ΣT ≥ 0)

(in this case density formula obviously does not hold)

meaning: in some directions x is not random at all

write Σ as

Σ = [Q+ Q0]

[

Σ+ 0
0 0

]

[Q+ Q0]
T

where Q = [Q+ Q0] is orthogonal, Σ+ > 0

• columns of Q0 are orthonormal basis for N (Σ)

• columns of Q+ are orthonormal basis for range(Σ)
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then QTx = [zT wT ]T , where

• z ∼ N (QT
+x̄,Σ+) is (nondegenerate) Gaussian (hence, density formula

holds)

• w = QT
0 x̄ ∈ Rn is not random

(QT
0 x is called deterministic component of x)
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Linear measurements

linear measurements with noise:

y = Ax + v

• x ∈ Rn is what we want to measure or estimate

• y ∈ Rm is measurement

• A ∈ Rm×n characterizes sensors or measurements

• v is sensor noise
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common assumptions:

• x ∼ N (x̄,Σx)

• v ∼ N (v̄,Σv)

• x and v are independent

• N (x̄,Σx) is the prior distribution of x (describes initial uncertainty
about x)

• v̄ is noise bias or offset (and is usually 0)

• Σv is noise covariance
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thus
[

x
v

]

∼ N
([

x̄
v̄

]

,

[

Σx 0
0 Σv

])

using
[

x
y

]

=

[

I 0
A I

] [

x
v

]

we can write

E

[

x
y

]

=

[

x̄
Ax̄ + v̄

]

and

E

[

x − x̄
y − ȳ

] [

x − x̄
y − ȳ

]T

=

[

I 0
A I

] [

Σx 0
0 Σv

] [

I 0
A I

]T

=

[

Σx ΣxAT

AΣx AΣxAT + Σv

]
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covariance of measurement y is AΣxAT + Σv

• AΣxAT is ‘signal covariance’

• Σv is ‘noise covariance’
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Minimum mean-square estimation

suppose x ∈ Rn and y ∈ Rm are random vectors (not necessarily Gaussian)

we seek to estimate x given y

thus we seek a function φ : Rm → Rn such that x̂ = φ(y) is near x

one common measure of nearness: mean-square error,

E ‖φ(y) − x‖2

minimum mean-square estimator (MMSE) φmmse minimizes this quantity

general solution: φmmse(y) = E(x|y), i.e., the conditional expectation of x
given y
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MMSE for Gaussian vectors

now suppose x ∈ Rn and y ∈ Rm are jointly Gaussian:

[

x
y

]

∼ N
( [

x̄
ȳ

]

,

[

Σx Σxy

ΣT
xy Σy

] )

(after alot of algebra) the conditional density is

px|y(v|y) = (2π)−n/2(detΛ)−1/2 exp

(

−1

2
(v − w)TΛ−1(v − w)

)

,

where
Λ = Σx − ΣxyΣ

−1
y ΣT

xy, w = x̄ + ΣxyΣ
−1
y (y − ȳ)

hence MMSE estimator (i.e., conditional expectation) is

x̂ = φmmse(y) = E(x|y) = x̄ + ΣxyΣ
−1
y (y − ȳ)
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φmmse is an affine function

MMSE estimation error, x̂ − x, is a Gaussian random vector

x̂ − x ∼ N (0,Σx − ΣxyΣ
−1
y ΣT

xy)

note that
Σx − ΣxyΣ

−1
y ΣT

xy ≤ Σx

i.e., covariance of estimation error is always less than prior covariance of x
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Best linear unbiased estimator

estimator
x̂ = φblu(y) = x̄ + ΣxyΣ

−1
y (y − ȳ)

makes sense when x, y aren’t jointly Gaussian

this estimator

• is unbiased, i.e., E x̂ = Ex

• often works well

• is widely used

• has minimum mean square error among all affine estimators

sometimes called best linear unbiased estimator
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MMSE with linear measurements

consider specific case

y = Ax + v, x ∼ N (x̄,Σx), v ∼ N (v̄,Σv),

x, v independent

MMSE of x given y is affine function

x̂ = x̄ + B(y − ȳ)

where B = ΣxAT (AΣxAT + Σv)
−1, ȳ = Ax̄ + v̄

intepretation:

• x̄ is our best prior guess of x (before measurement)

• y − ȳ is the discrepancy between what we actually measure (y) and the
expected value of what we measure (ȳ)
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• estimator modifies prior guess by B times this discrepancy

• estimator blends prior information with measurement

• B gives gain from observed discrepancy to estimate

• B is small if noise term Σv in ‘denominator’ is large
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MMSE error with linear measurements

MMSE estimation error, x̃ = x̂ − x, is Gaussian with zero mean and
covariance

Σest = Σx − ΣxAT (AΣxAT + Σv)
−1AΣx

• Σest ≤ Σx, i.e., measurement always decreases uncertainty about x

• difference Σx − Σest gives value of measurement y in estimating x

• e.g., (Σest ii/Σx ii)1/2 gives fractional decrease in uncertainty of xi due
to measurement

note: error covariance Σest can be determined before measurement y is
made!

Estimation 6–23



to evaluate Σest, only need to know

• A (which characterizes sensors)

• prior covariance of x (i.e., Σx)

• noise covariance (i.e., Σv)

you do not need to know the measurement y (or the means x̄, v̄)

useful for experiment design or sensor selection
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