Quadratic forms

a function $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ of the form

$$
f(x)=x^{T} A x=\sum_{i, j=1}^{n} A_{i j} x_{i} x_{j}
$$

is called a quadratic form
in a quadratic form we may as well assume $A=A^{T}$ since

$$
x^{T} A x=x^{T}\left(\left(A+A^{T}\right) / 2\right) x
$$

$\left(\left(A+A^{T}\right) / 2\right.$ is called the symmetric part of $\left.A\right)$
uniqueness: if $x^{T} A x=x^{T} B x$ for all $x \in \mathbf{R}^{n}$ and $A=A^{T}, B=B^{T}$, then $A=B$

Examples

- $\|B x\|^{2}=x^{T} B^{T} B x$
- $\sum_{i=1}^{n-1}\left(x_{i+1}-x_{i}\right)^{2}$
- $\|F x\|^{2}-\|G x\|^{2}$
sets defined by quadratic forms:
- $\{x \mid f(x)=a\}$ is called a quadratic surface
- $\{x \mid f(x) \leq a\}$ is called a quadratic region

Inequalities for quadratic forms

suppose $A=A^{T}, A=Q \Lambda Q^{T}$ with eigenvalues sorted so $\lambda_{1} \geq \cdots \geq \lambda_{n}$

$$
\begin{aligned}
x^{T} A x & =x^{T} Q \Lambda Q^{T} x \\
& =\left(Q^{T} x\right)^{T} \Lambda\left(Q^{T} x\right) \\
& =\sum_{i=1}^{n} \lambda_{i}\left(q_{i}^{T} x\right)^{2} \\
& \leq \lambda_{1} \sum_{i=1}^{n}\left(q_{i}^{T} x\right)^{2} \\
& =\lambda_{1}\|x\|^{2}
\end{aligned}
$$

i.e., we have $x^{T} A x \leq \lambda_{1} x^{T} x$
similar argument shows $x^{T} A x \geq \lambda_{n}\|x\|^{2}$, so we have

$$
\lambda_{n} x^{T} x \leq x^{T} A x \leq \lambda_{1} x^{T} x
$$

sometimes λ_{1} is called $\lambda_{\max }, \lambda_{n}$ is called $\lambda_{\min }$
note also that

$$
q_{1}^{T} A q_{1}=\lambda_{1}\left\|q_{1}\right\|^{2}, \quad q_{n}^{T} A q_{n}=\lambda_{n}\left\|q_{n}\right\|^{2}
$$

so the inequalities are tight

Positive semidefinite and positive definite matrices

suppose $A=A^{T} \in \mathbf{R}^{n \times n}$
we say A is positive semidefinite if $x^{T} A x \geq 0$ for all x

- denoted $A \geq 0$ (and sometimes $A \succeq 0$)
- $A \geq 0$ if and only if $\lambda_{\min }(A) \geq 0$, i.e., all eigenvalues are nonnegative
- not the same as $A_{i j} \geq 0$ for all i, j
we say A is positive definite if $x^{T} A x>0$ for all $x \neq 0$
- denoted $A>0$
- $A>0$ if and only if $\lambda_{\min }(A)>0$, i.e., all eigenvalues are positive

Matrix inequalities

- we say A is negative semidefinite if $-A \geq 0$
- we say A is negative definite if $-A>0$
- otherwise, we say A is indefinite
matrix inequality: if $B=B^{T} \in \mathbf{R}^{n}$ we say $A \geq B$ if $A-B \geq 0, A<B$ if $B-A>0$, etc.
for example:
- $A \geq 0$ means A is positive semidefinite
- $A>B$ means $x^{T} A x>x^{T} B x$ for all $x \neq 0$
many properties that you'd guess hold actually do, e.g.,
- if $A \geq B$ and $C \geq D$, then $A+C \geq B+D$
- if $B \leq 0$ then $A+B \leq A$
- if $A \geq 0$ and $\alpha \geq 0$, then $\alpha A \geq 0$
- if $A \geq 0$, then $A^{2}>0$
- if $A>0$, then $A^{-1}>0$
matrix inequality is only a partial order: we can have

$$
A \nsupseteq B, \quad B \nsupseteq A
$$

(such matrices are called incomparable)

Ellipsoids

if $A=A^{T}>0$, the set

$$
\mathcal{E}=\left\{x \mid x^{T} A x \leq 1\right\}
$$

is an ellipsoid in \mathbf{R}^{n}, centered at 0

semi-axes are given by $s_{i}=\lambda_{i}^{-1 / 2} q_{i}$, i.e.:

- eigenvectors determine directions of semiaxes
- eigenvalues determine lengths of semiaxes
note:
- in direction $q_{1}, x^{T} A x$ is large, hence ellipsoid is thin in direction q_{1}
- in direction $q_{n}, x^{T} A x$ is small, hence ellipsoid is fat in direction q_{n}
- $\sqrt{\lambda_{\max } / \lambda_{\min }}$ gives maximum eccentricity
if $\tilde{\mathcal{E}}=\left\{x \mid x^{T} B x \leq 1\right\}$, where $B>0$, then $\mathcal{E} \subseteq \tilde{\mathcal{E}} \Longleftrightarrow A \geq B$

Gain of a matrix in a direction

suppose $A \in \mathbf{R}^{m \times n}$ (not necessarily square or symmetric)
for $x \in \mathbf{R}^{n},\|A x\| /\|x\|$ gives the amplification factor or gain of A in the direction x
obviously, gain varies with direction of input x

questions:

- what is maximum gain of A (and corresponding maximum gain direction)?
- what is minimum gain of A (and corresponding minimum gain direction)?
- how does gain of A vary with direction?

Matrix norm

the maximum gain

$$
\max _{x \neq 0} \frac{\|A x\|}{\|x\|}
$$

is called the matrix norm or spectral norm of A and is denoted $\|A\|$

$$
\max _{x \neq 0} \frac{\|A x\|^{2}}{\|x\|^{2}}=\max _{x \neq 0} \frac{x^{T} A^{T} A x}{\|x\|^{2}}=\lambda_{\max }\left(A^{T} A\right)
$$

so we have $\|A\|=\sqrt{\lambda_{\max }\left(A^{T} A\right)}$
similarly the minimum gain is given by

$$
\min _{x \neq 0}\|A x\| /\|x\|=\sqrt{\lambda_{\min }\left(A^{T} A\right)}
$$

note that

- $A^{T} A \in \mathbf{R}^{n \times n}$ is symmetric and $A^{T} A \geq 0$ so $\lambda_{\text {min }}, \lambda_{\max } \geq 0$
- 'max gain' input direction is $x=q_{1}$, eigenvector of $A^{T} A$ associated with $\lambda_{\max }$
- 'min gain' input direction is $x=q_{n}$, eigenvector of $A^{T} A$ associated with $\lambda_{\text {min }}$
example: $A=\left[\begin{array}{ll}1 & 2 \\ 3 & 4 \\ 5 & 6\end{array}\right]$

$$
A^{T} A=\left[\begin{array}{ll}
35 & 44 \\
44 & 56
\end{array}\right]
$$

$$
=\left[\begin{array}{rr}
0.620 & 0.785 \\
0.785 & -0.620
\end{array}\right]\left[\begin{array}{rr}
90.7 & 0 \\
0 & 0.265
\end{array}\right]\left[\begin{array}{rr}
0.620 & 0.785 \\
0.785 & -0.620
\end{array}\right]^{T}
$$

then $\|A\|=\sqrt{\lambda_{\max }\left(A^{T} A\right)}=9.53$:

$$
\left\|\left[\begin{array}{l}
0.620 \\
0.785
\end{array}\right]\right\|=1, \quad\left\|A\left[\begin{array}{l}
0.620 \\
0.785
\end{array}\right]\right\|=\left\|\left[\begin{array}{l}
2.18 \\
4.99 \\
7.78
\end{array}\right]\right\|=9.53
$$

min gain is $\sqrt{\lambda_{\min }\left(A^{T} A\right)}=0.514$:

$$
\left\|\left[\begin{array}{r}
0.785 \\
-0.620
\end{array}\right]\right\|=1, \quad\left\|A\left[\begin{array}{r}
0.785 \\
-0.620
\end{array}\right]\right\|=\left\|\left[\begin{array}{r}
0.46 \\
0.14 \\
-0.18
\end{array}\right]\right\|=0.514
$$

for all $x \neq 0$, we have

$$
0.514 \leq \frac{\|A x\|}{\|x\|} \leq 9.53
$$

Properties of matrix norm

- consistent with vector norm: matrix norm of $a \in \mathbf{R}^{n \times 1}$ is $\sqrt{\lambda_{\max }\left(a^{T} a\right)}=\sqrt{a^{T} a}$
- for any $x,\|A x\| \leq\|A\|\|x\|$
- scaling: $\|a A\|=|a|\|A\|$
- triangle inequality: $\|A+B\| \leq\|A\|+\|B\|$
- definiteness: $\|A\|=0 \quad \Leftrightarrow \quad A=0$
- norm of product: $\|A B\| \leq\|A\|\|B\|$

Singular value decomposition

more complete picture of gain properties of A given by singular value decomposition (SVD) of A :

$$
A=U \Sigma V^{T}
$$

where

- $A \in \mathbf{R}^{m \times n}, \mathbf{R a n k}(A)=r$
- $U \in \mathbf{R}^{m \times r}, U^{T} U=I$
- $V \in \mathbf{R}^{n \times r}, V^{T} V=I$
- $\Sigma=\operatorname{diag}\left(\sigma_{1}, \ldots, \sigma_{r}\right)$, where $\sigma_{1} \geq \cdots \geq \sigma_{r}>0$
with $U=\left[u_{1} \cdots u_{r}\right], V=\left[v_{1} \cdots v_{r}\right]$,

$$
A=U \Sigma V^{T}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}
$$

- σ_{i} are the (nonzero) singular values of A
- v_{i} are the right or input singular vectors of A
- u_{i} are the left or output singular vectors of A

$$
A^{T} A=\left(U \Sigma V^{T}\right)^{T}\left(U \Sigma V^{T}\right)=V \Sigma^{2} V^{T}
$$

hence:

- v_{i} are eigenvectors of $A^{T} A$ (corresponding to nonzero eigenvalues)
- $\sigma_{i}=\sqrt{\lambda_{i}\left(A^{T} A\right)}\left(\right.$ and $\lambda_{i}\left(A^{T} A\right)=0$ for $\left.i>r\right)$
- $\|A\|=\sigma_{1}$
similarly,

$$
A A^{T}=\left(U \Sigma V^{T}\right)\left(U \Sigma V^{T}\right)^{T}=U \Sigma^{2} U^{T}
$$

hence:

- u_{i} are eigenvectors of $A A^{T}$ (corresponding to nonzero eigenvalues)
- $\sigma_{i}=\sqrt{\lambda_{i}\left(A A^{T}\right)}\left(\right.$ and $\lambda_{i}\left(A A^{T}\right)=0$ for $\left.i>r\right)$
- $u_{1}, \ldots u_{r}$ are orthonormal basis for range (A)
- $v_{1}, \ldots v_{r}$ are orthonormal basis for $\mathcal{N}(A)^{\perp}$

Interpretations

$$
A=U \Sigma V^{T}=\sum_{i=1}^{r} \sigma_{i} u_{i} v_{i}^{T}
$$

linear mapping $y=A x$ can be decomposed as

- compute coefficients of x along input directions v_{1}, \ldots, v_{r}
- scale coefficients by σ_{i}
- reconstitute along output directions u_{1}, \ldots, u_{r}
difference with eigenvalue decomposition for symmetric A : input and output directions are different
- v_{1} is most sensitive (highest gain) input direction
- u_{1} is highest gain output direction
- $A v_{1}=\sigma_{1} u_{1}$

SVD gives clearer picture of gain as function of input/output directions example: consider $A \in \mathbf{R}^{4 \times 4}$ with $\Sigma=\operatorname{diag}(10,7,0.1,0.05)$

- input components along directions v_{1} and v_{2} are amplified (by about 10) and come out mostly along plane spanned by u_{1}, u_{2}
- input components along directions v_{3} and v_{4} are attenuated (by about 10)
- $\|A x\| /\|x\|$ can range between 10 and 0.05
- A is nonsingular
- for some applications you might say A is effectively rank 2

Lecture 16 SVD Applications

- general pseudo-inverse
- full SVD
- image of unit ball under linear transformation
- SVD in estimation/inversion
- sensitivity of linear equations to data error
- low rank approximation via SVD

Min Squared Error: Over-Constrained

- Given $\mathbf{y} \in \mathbf{R}^{q}$ and $\mathbf{A} \in \mathbf{R}^{q \times n}$ so that $q>n(\mathbf{A}$ is slim) and $\operatorname{rank}(\mathbf{A})=n$ we'd like to find $\mathbf{x} \in \mathrm{R}^{n}$ such that $\mathbf{A x} \approx \mathbf{y}$ in the minimum l_{2} sense:
where $\|\mathbf{v}\|^{2}=\sum_{i} \mathrm{v}_{i}^{2}$

$$
\arg \min _{\mathbf{x}}\|\mathbf{y}-\mathbf{A x}\|^{2}
$$

- If \mathbf{A} were invertible we would simply take $\mathbf{x}=\mathbf{A}^{-1} \mathbf{y}$
- This is a quadratic expression in \mathbf{x} so it has a single minimum where its gradient is 0 .

$$
\begin{aligned}
& J=\|\mathbf{y}-\mathbf{A x}\|^{2}=(\mathbf{y}-\mathbf{A} \mathbf{x})^{\prime}(\mathbf{y}-\mathbf{A} \mathbf{x})=\mathbf{y}^{\prime} \mathbf{y}-2 \mathbf{y}^{\prime} \mathbf{A} \mathbf{x}+\mathbf{x}^{\prime} \mathbf{A}^{\prime} \mathbf{A} \mathbf{x} \\
& \frac{\partial J}{\partial \mathbf{x}}=-2 \mathbf{y}^{\prime} \mathbf{A}+2 \mathbf{x}^{\prime} \mathbf{A}^{\prime} \mathbf{A}=0 \\
& \mathbf{A}^{\prime} \mathbf{y}=\mathbf{A}^{\prime} \mathbf{A} \mathbf{x}
\end{aligned}
$$

- $\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-1}$ exists (rank $\left.=n\right)$ so $\mathbf{x}=\left(\mathbf{A}^{\prime} \mathbf{A}\right)^{-1} \mathbf{A}^{\prime} \mathbf{y}$
- Plug in SVD and get $x=\mathbf{V} \boldsymbol{\Sigma}^{-2} \mathbf{V}^{\prime} \mathbf{V} \boldsymbol{\Sigma} \mathbf{U}^{\prime} \mathbf{y}=\mathbf{V} \boldsymbol{\Sigma}^{-1} \mathbf{U}^{\prime} \mathbf{y}$
- $\mathbf{V} \mathbf{\Sigma}^{-1} \mathbf{U}^{\prime}$ is denoted by \mathbf{A}^{\dagger} and is called \mathbf{A}^{\prime} s pseudo inverse since $\mathbf{A}^{\dagger} \mathbf{A}^{=} \mathbf{I}$

Under-Constrained

- Given $\mathbf{y} \in \mathrm{R}^{q}$ and $\mathbf{A} \in \mathrm{R}^{q \times n}$ so that $q<n(\mathbf{A}$ is fat) and $\operatorname{rank}(\mathbf{A})=n$ we'd like to find $\mathbf{x} \in \mathrm{R}^{n}$ such that $\mathbf{A x}=\mathbf{y}$ (easy). Of all possible $\mathbf{x s}$ we want the smallest \mathbf{x}, i.e.

$$
\arg \min _{x}\|\mathbf{x}\|^{2} \quad \text { s.t. } \mathbf{A x}=\mathbf{y}
$$

- This is a constrained optimization problem, so we solve with Lagrange multipliers

$$
\begin{aligned}
J=\mathbf{x}^{\prime} \mathbf{x}+\lambda^{\prime}(\mathbf{A} \mathbf{x}-\mathbf{y}) \quad \frac{\partial J}{\partial x} & =2 \mathbf{x}^{\prime}+\lambda^{\prime} \mathbf{A}=0 \\
\mathbf{x} & =\frac{1}{2} \mathbf{A}^{\prime} \lambda
\end{aligned}
$$

- Plug into constraint $\mathbf{A x}=\mathbf{y}$

$$
\mathbf{A}\left(\frac{1}{2} \mathbf{A}^{\prime} \lambda\right)=\mathbf{y}
$$

- $(\mathbf{A A})^{-1}$ exists, so

$$
\lambda=2\left(\mathbf{A A}^{\prime}\right)^{-1} \mathbf{y} \quad \mathbf{x}=\mathbf{A}^{\prime}\left(\mathbf{A} \mathbf{A}^{\prime}\right)^{-1} \mathbf{y}=\mathbf{A}^{\dagger} \mathbf{y}
$$

where, as before $\mathbf{A}^{\dagger}=\mathbf{V} \boldsymbol{\Sigma}^{-1} \mathbf{U}$,

Optimal Control*
 *Of noiseless, open loop, discrete time, LTI system

- Given system $\mathbf{x}_{n+1}=\mathbf{A} \mathbf{x}_{n}+\mathbf{B} \mathbf{u}_{n}$ with $\mathbf{x}_{0}=0$
bring the system to specified \mathbf{x}_{n} (with a minimum energy control signal)
- We can expand the recursive definition and get

$$
\mathbf{x}_{n}=\sum_{i=0}^{n-1} \mathbf{A}^{i} \mathbf{B} \mathbf{u}_{i}
$$

- or, in matrix form

$$
\mathbf{x}_{n}=\underbrace{\left[\mathbf{B} \mathbf{A B} \cdots \mathbf{A}^{n-1} \mathbf{B}\right]}_{\tilde{\mathbf{A}}} \underbrace{\left[\begin{array}{c}
\mathbf{u}_{0} \\
\vdots \\
\mathbf{u}_{n-1}
\end{array}\right]}_{\tilde{\mathbf{u}}}
$$

- This is an under constrained problem. If $\tilde{\mathbf{A}}$ is of rank n (i.e. system is controllable) then there are infinite possible solutions for $\tilde{\mathbf{u}}$
- but there is only one solution that minimizes $\|\tilde{\mathbf{u}}\|^{2}: \quad \tilde{\mathbf{u}}=\tilde{\mathbf{A}}^{\prime}\left(\tilde{\mathbf{A}} \tilde{\mathbf{A}}^{\prime}\right)^{-1} \mathbf{x}_{n}$
- Plugging in definition of $\tilde{\mathbf{A}}$ to $\tilde{\mathbf{A}}^{\dagger}=\tilde{\mathbf{A}}^{\prime}\left(\tilde{\mathbf{A}} \tilde{\mathbf{A}}^{\prime}\right)^{-1}$ we see that

$$
\mathbf{u}_{i}=\mathbf{B}^{\prime} \mathbf{A}^{i} \underbrace{\left(\sum_{j=0}^{n-1} \mathbf{A}^{i} \mathbf{B B}^{\prime}\left(\mathbf{A}^{i}\right)^{\prime}\right)^{-1}}_{\mathbf{w}_{c}^{-1}(n-1)} \mathbf{x}_{n}
$$

- The minimum energy (smallest $\|\tilde{\mathbf{u}}\|^{2}$) control signal is the same signal used in the proof that the system is controllable iff the grammian is invertible (How did we assure that the grammian is invertible here?)

General pseudo-inverse

if A has SVD $A=U \Sigma V^{T}$,

$$
A^{\dagger}=V \Sigma^{-1} U^{T}
$$

is the pseudo-inverse or Moore-Penrose inverse of A
if A is skinny and full rank,

$$
A^{\dagger}=\left(A^{T} A\right)^{-1} A^{T}
$$

gives the least-squares solution $x_{1 \mathrm{~s}}=A^{\dagger} y$
if A is fat and full rank,

$$
A^{\dagger}=A^{T}\left(A A^{T}\right)^{-1}
$$

gives the least-norm solution $x_{\ln }=A^{\dagger} y$
in general case:

$$
X_{\mathrm{ls}}=\left\{z \mid\|A z-y\|=\min _{w}\|A w-y\|\right\}
$$

is set of least-squares solutions
$x_{\text {pinv }}=A^{\dagger} y \in X_{\text {ls }}$ has minimum norm on $X_{\text {ls }}$, i.e., $x_{\text {pinv }}$ is the minimum-norm, least-squares solution

Pseudo-inverse via regularization

for $\mu>0$, let x_{μ} be (unique) minimizer of

$$
\|A x-y\|^{2}+\mu\|x\|^{2}
$$

i.e.,

$$
x_{\mu}=\left(A^{T} A+\mu I\right)^{-1} A^{T} y
$$

here, $A^{T} A+\mu I>0$ and so is invertible then we have $\lim _{\mu \rightarrow 0} x_{\mu}=A^{\dagger} y$
in fact, we have $\lim _{\mu \rightarrow 0}\left(A^{T} A+\mu I\right)^{-1} A^{T}=A^{\dagger}$
(check this!)

Full SVD

SVD of $A \in \mathbf{R}^{m \times n}$ with $\operatorname{Rank}(A)=r:$

$$
A=U_{1} \Sigma_{1} V_{1}^{T}=\left[\begin{array}{lll}
u_{1} & \cdots & u_{r}
\end{array}\right]\left[\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{r}
\end{array}\right]\left[\begin{array}{c}
v_{1}^{T} \\
\vdots \\
v_{r}^{T}
\end{array}\right]
$$

- find $U_{2} \in \mathbf{R}^{m \times(m-r)}, V_{2} \in \mathbf{R}^{n \times(n-r)}$ s.t. $U=\left[U_{1} U_{2}\right] \in \mathbf{R}^{m \times m}$ and $V=\left[V_{1} V_{2}\right] \in \mathbf{R}^{n \times n}$ are orthogonal
- add zero rows/cols to Σ_{1} to form $\Sigma \in \mathbf{R}^{m \times n}$:

$$
\Sigma=\left[\begin{array}{c|c}
\Sigma_{1} & 0_{r \times(n-r)} \\
\hline 0_{(m-r) \times r} & 0_{(m-r) \times(n-r)}
\end{array}\right]
$$

then we have
$A=U_{1} \Sigma_{1} V_{1}^{T}=\left[U_{1} \mid U_{2}\right]\left[\begin{array}{c|c}\Sigma_{1} & 0_{r \times(n-r)} \\ \hline 0_{(m-r) \times r} & 0_{(m-r) \times(n-r)}\end{array}\right]\left[\begin{array}{c}V_{1}^{T} \\ \hline V_{2}^{T}\end{array}\right]$
i.e.:

$$
A=U \Sigma V^{T}
$$

called full SVD of A
(SVD with positive singular values only called compact SVD)

Image of unit ball under linear transformation

full SVD:

$$
A=U \Sigma V^{T}
$$

gives intepretation of $y=A x$:

- rotate (by V^{T})
- stretch along axes by $\sigma_{i}\left(\sigma_{i}=0\right.$ for $\left.i>r\right)$
- zero-pad (if $m>n$) or truncate (if $m<n$) to get m-vector
- rotate (by U)

Image of unit ball under A

$\{A x \mid\|x\| \leq 1\}$ is ellipsoid with principal axes $\sigma_{i} u_{i}$.

SVD in estimation/inversion

suppose $y=A x+v$, where

- $y \in \mathbf{R}^{m}$ is measurement
- $x \in \mathbf{R}^{n}$ is vector to be estimated
- v is a measurement noise or error
'norm-bound' model of noise: we assume $\|v\| \leq \alpha$ but otherwise know nothing about v (α gives max norm of noise)
- consider estimator $\hat{x}=B y$, with $B A=I$ (i.e., unbiased)
- estimation or inversion error is $\tilde{x}=\hat{x}-x=B v$
- set of possible estimation errors is ellipsoid

$$
\tilde{x} \in \mathcal{E}_{\text {unc }}=\{B v \mid\|v\| \leq \alpha\}
$$

- $x=\hat{x}-\tilde{x} \in \hat{x}-\mathcal{E}_{\text {unc }}=\hat{x}+\mathcal{E}_{\text {unc }}$, i.e.: true x lies in uncertainty ellipsoid $\mathcal{E}_{\text {unc }}$, centered at estimate \hat{x}
- 'good' estimator has 'small' $\mathcal{E}_{\text {unc }}$ (with $B A=I$, of course)
semiaxes of $\mathcal{E}_{\text {unc }}$ are $\alpha \sigma_{i} u_{i}$ (singular values $\&$ vectors of B)
e.g., maximum norm of error is $\alpha\|B\|$, i.e., $\|\hat{x}-x\| \leq \alpha\|B\|$
optimality of least-squares: suppose $B A=I$ is any estimator, and $B_{\mathrm{ls}}=A^{\dagger}$ is the least-squares estimator
then:
- $B_{\mathrm{ls}} B_{\mathrm{ls}}^{T} \leq B B^{T}$
- $\mathcal{E}_{\text {ls }} \subseteq \mathcal{E}$
- in particular $\left\|B_{\text {ls }}\right\| \leq\|B\|$
i.e., the least-squares estimator gives the smallest uncertainty ellipsoid

Proof of optimality property

suppose $A \in \mathbf{R}^{m \times n}, m>n$, is full rank
SVD: $A=U \Sigma V^{T}$, with V orthogonal
$B_{\mathrm{ls}}=A^{\dagger}=V \Sigma^{-1} U^{T}$, and B satisfies $B A=I$
define $Z=B-B_{\mathrm{ls}}$, so $B=B_{\mathrm{ls}}+Z$
then $Z A=Z U \Sigma V^{T}=0$, so $Z U=0$ (multiply by $V \Sigma^{-1}$ on right)
therefore

$$
\begin{aligned}
B B^{T} & =\left(B_{\mathrm{ls}}+Z\right)\left(B_{\mathrm{ls}}+Z\right)^{T} \\
& =B_{\mathrm{ls}} B_{\mathrm{ls}}^{T}+B_{\mathrm{ls}} Z^{T}+Z B_{\mathrm{ls}}^{T}+Z Z^{T} \\
& =B_{\mathrm{ls}} B_{\mathrm{ls}}^{T}+Z Z^{T} \\
& \geq B_{\mathrm{ls}} B_{\mathrm{ls}}^{T}
\end{aligned}
$$

using $Z B_{\mathrm{ls}}^{T}=(Z U) \Sigma^{-1} V^{T}=0$

Sensitivity of linear equations to data error

consider $y=A x, A \in \mathbf{R}^{n \times n}$ invertible; of course $x=A^{-1} y$
suppose we have an error or noise in y, i.e., y becomes $y+\delta y$
then x becomes $x+\delta x$ with $\delta x=A^{-1} \delta y$
hence we have $\|\delta x\|=\left\|A^{-1} \delta y\right\| \leq\left\|A^{-1}\right\|\|\delta y\|$
if $\left\|A^{-1}\right\|$ is large,

- small errors in y can lead to large errors in x
- can't solve for x given y (with small errors)
- hence, A can be considered singular in practice
a more refined analysis uses relative instead of absolute errors in x and y since $y=A x$, we also have $\|y\| \leq\|A\|\|x\|$, hence

$$
\begin{gathered}
\frac{\|\delta x\|}{\|x\|} \leq\|A\|\left\|A^{-1}\right\| \frac{\|\delta y\|}{\|y\|} \\
\kappa(A)=\|A\|\left\|A^{-1}\right\|=\sigma_{\max }(A) / \sigma_{\min }(A)
\end{gathered}
$$

is called the condition number of A
we have:
relative error in solution $x \leq$ condition number • relative error in data y or, in terms of \# bits of guaranteed accuracy:
$\#$ bits accuacy in solution $\approx \#$ bits accuracy in data $-\log _{2} \kappa$
we say

- A is well conditioned if κ is small
- A is poorly conditioned if κ is large
(definition of 'small' and 'large' depend on application)
same analysis holds for least-squares solutions with A nonsquare, $\kappa=\sigma_{\max }(A) / \sigma_{\min }(A)$

Distance to singularity

another interpretation of σ_{i} :

$$
\sigma_{i}=\min \{\|A-B\| \mid \boldsymbol{\operatorname { R a n k }}(B) \leq i-1\}
$$

i.e., the distance (measured by matrix norm) to the nearest rank $i-1$ matrix
for example, if $A \in \mathbf{R}^{n \times n}, \sigma_{n}=\sigma_{\min }$ is distance to nearest singular matrix
hence, small $\sigma_{\min }$ means A is near to a singular matrix
application: model simplification
suppose $y=A x+v$, where

- $A \in \mathbf{R}^{100 \times 30}$ has SVs

$$
10,7,2,0.5,0.01, \ldots, 0.0001
$$

- $\|x\|$ is on the order of 1
- unknown error or noise v has norm on the order of 0.1
then the terms $\sigma_{i} u_{i} v_{i}^{T} x$, for $i=5, \ldots, 30$, are substantially smaller than the noise term v
simplified model:

$$
y=\sum_{i=1}^{4} \sigma_{i} u_{i} v_{i}^{T} x+v
$$

