Lecture 2 LQR via Lagrange multipliers

- useful matrix identities
- linearly constrained optimization
- LQR via constrained optimization

Some useful matrix identities

let's start with a simple one:

$$
Z(I+Z)^{-1}=I-(I+Z)^{-1}
$$

(provided $I+Z$ is invertible)
to verify this identity, we start with

$$
I=(I+Z)(I+Z)^{-1}=(I+Z)^{-1}+Z(I+Z)^{-1}
$$

re-arrange terms to get identity
an identity that's a bit more complicated:

$$
(I+X Y)^{-1}=I-X(I+Y X)^{-1} Y
$$

(if either inverse exists, then the other does; in fact $\operatorname{det}(I+X Y)=\operatorname{det}(I+Y X))$
to verify:

$$
\begin{aligned}
\left(I-X(I+Y X)^{-1} Y\right)(I+X Y) & =I+X Y-X(I+Y X)^{-1} Y(I+X Y) \\
& =I+X Y-X(I+Y X)^{-1}(I+Y X) Y \\
& =I+X Y-X Y=I
\end{aligned}
$$

another identity:

$$
Y(I+X Y)^{-1}=(I+Y X)^{-1} Y
$$

to verify this one, start with $Y(I+X Y)=(I+Y X) Y$ then multiply on left by $(I+Y X)^{-1}$, on right by $(I+X Y)^{-1}$

- note dimensions of inverses not necessarily the same
- mnemonic: lefthand Y moves into inverse, pushes righthand Y out . . .
and one more:

$$
\left(I+X Z^{-1} Y\right)^{-1}=I-X(Z+Y X)^{-1} Y
$$

let's check:

$$
\begin{aligned}
\left(I+X\left(Z^{-1} Y\right)\right)^{-1} & =I-X\left(I+Z^{-1} Y X\right)^{-1} Z^{-1} Y \\
& =I-X\left(Z\left(I+Z^{-1} Y X\right)\right)^{-1} Y \\
& =I-X(Z+Y X)^{-1} Y
\end{aligned}
$$

Example: rank one update

- suppose we've already calculated or know A^{-1}, where $A \in \mathbf{R}^{n \times n}$
- we need to calculate $\left(A+b c^{T}\right)^{-1}$, where $b, c \in \mathbf{R}^{n}$ $\left(A+b c^{T}\right.$ is called a rank one update of $\left.A\right)$
we'll use another identity, called matrix inversion lemma:

$$
\left(A+b c^{T}\right)^{-1}=A^{-1}-\frac{1}{1+c^{T} A^{-1} b}\left(A^{-1} b\right)\left(c^{T} A^{-1}\right)
$$

note that RHS is easy to calculate since we know A^{-1}
more general form of matrix inversion lemma:

$$
(A+B C)^{-1}=A^{-1}-A^{-1} B\left(I+C A^{-1} B\right)^{-1} C A^{-1}
$$

let's verify it:

$$
\begin{aligned}
(A+B C)^{-1} & =\left(A\left(I+A^{-1} B C\right)\right)^{-1} \\
& =\left(I+\left(A^{-1} B\right) C\right)^{-1} A^{-1} \\
& =\left(I-\left(A^{-1} B\right)\left(I+C\left(A^{-1} B\right)\right)^{-1} C\right) A^{-1} \\
& =A^{-1}-A^{-1} B\left(I+C A^{-1} B\right)^{-1} C A^{-1}
\end{aligned}
$$

Another formula for the Riccati recursion

$$
\begin{aligned}
P_{t-1} & =Q+A^{T} P_{t} A-A^{T} P_{t} B\left(R+B^{T} P_{t} B\right)^{-1} B^{T} P_{t} A \\
& =Q+A^{T} P_{t}\left(I-B\left(R+B^{T} P_{t} B\right)^{-1} B^{T} P_{t}\right) A \\
& =Q+A^{T} P_{t}\left(I-B\left(\left(I+B^{T} P_{t} B R^{-1}\right) R\right)^{-1} B^{T} P_{t}\right) A \\
& =Q+A^{T} P_{t}\left(I-B R^{-1}\left(I+B^{T} P_{t} B R^{-1}\right)^{-1} B^{T} P_{t}\right) A \\
& =Q+A^{T} P_{t}\left(I+B R^{-1} B^{T} P_{t}\right)^{-1} A \\
& =Q+A^{T}\left(I+P_{t} B R^{-1} B^{T}\right)^{-1} P_{t} A
\end{aligned}
$$

or, in pretty, symmetric form:

$$
P_{t-1}=Q+A^{T} P_{t}^{1 / 2}\left(I+P_{t}^{1 / 2} B R^{-1} B^{T} P_{t}^{1 / 2}\right)^{-1} P_{t}^{1 / 2} A
$$

Linearly constrained optimization

```
minimize }\quadf(x
subject to Fx=g
```

- $f: \mathbf{R}^{n} \rightarrow \mathbf{R}$ is smooth objective function
- $F \in \mathbf{R}^{m \times n}$ is fat
form Lagrangian $L(x, \lambda)=f(x)+\lambda^{T}(g-F x)$ (λ is Lagrange multiplier)
if x is optimal, then

$$
\nabla_{x} L=\nabla f(x)-F^{T} \lambda=0, \quad \nabla_{\lambda} L=g-F x=0
$$

i.e., $\nabla f(x)=F^{T} \lambda$ for some $\lambda \in \mathbf{R}^{m}$
(generalizes optimality condition $\nabla f(x)=0$ for unconstrained minimization problem)

Picture

$\nabla f(x)=F^{T} \lambda$ for some $\lambda \Longleftrightarrow \nabla f(x) \in \mathcal{R}\left(F^{T}\right) \Longleftrightarrow \nabla f(x) \perp \mathcal{N}(F)$

Feasible descent direction

suppose x is current, feasible point (i.e., $F x=g$)
consider a small step in direction v, to $x+h v$ (h small, positive)
when is $x+h v$ better than x ?
need $x+h v$ feasible: $F(x+h v)=g+h F v=g$, so $F v=0$
$v \in \mathcal{N}(F)$ is called a feasible direction
we need $x+h v$ to have smaller objective than x :

$$
f(x+h v) \approx f(x)+h \nabla f(x)^{T} v<f(x)
$$

so we need $\nabla f(x)^{T} v<0$ (called a descent direction)
(if $\nabla f(x)^{T} v>0,-v$ is a descent direction, so we need only $\nabla f(x)^{T} v \neq 0$) x is not optimal if there exists a feasible descent direction
if x is optimal, every feasible direction satisfies $\nabla f(x)^{T} v=0$

$$
\begin{aligned}
F v=0 \Rightarrow \nabla f(x)^{T} v=0 & \Longleftrightarrow \mathcal{N}(F) \subseteq \mathcal{N}\left(\nabla f(x)^{T}\right) \\
& \Longleftrightarrow \mathcal{R}\left(F^{T}\right) \supseteq \mathcal{R}(\nabla f(x)) \\
& \Longleftrightarrow \nabla f(x) \in \mathcal{R}\left(F^{T}\right) \\
& \Longleftrightarrow \nabla f(x)=F^{T} \lambda \text { for some } \lambda \in \mathbf{R}^{m} \\
& \Longleftrightarrow \nabla f(x) \perp \mathcal{N}(F)
\end{aligned}
$$

LQR as constrained minimization problem

minimize $\quad J=\frac{1}{2} \sum_{t=0}^{N-1}\left(x(t)^{T} Q x(t)+u(t)^{T} R u(t)\right)+\frac{1}{2} x(N)^{T} Q_{f} x(N)$
subject to $\quad x(t+1)=A x(t)+B u(t), \quad t=0, \ldots, N-1$

- variables are $u(0), \ldots, u(N-1)$ and $x(1), \ldots, x(N)$ $\left(x(0)=x_{0}\right.$ is given $)$
- objective is (convex) quadratic (factor $1 / 2$ in objective is for convenience)
introduce Lagrange multipliers $\lambda(1), \ldots, \lambda(N) \in \mathbf{R}^{n}$ and form Lagrangian

$$
L=J+\sum_{t=0}^{N-1} \lambda(t+1)^{T}(A x(t)+B u(t)-x(t+1))
$$

Optimality conditions

we have $x(t+1)=A x(t)+B u(t)$ for $t=0, \ldots, N-1, x(0)=x_{0}$
for $t=0, \ldots, N-1, \nabla_{u(t)} L=R u(t)+B^{T} \lambda(t+1)=0$
hence, $u(t)=-R^{-1} B^{T} \lambda(t+1)$
for $t=1, \ldots, N-1, \nabla_{x(t)} L=Q x(t)+A^{T} \lambda(t+1)-\lambda(t)=0$
hence, $\lambda(t)=A^{T} \lambda(t+1)+Q x(t)$
$\nabla_{x(N)} L=Q_{f} x(N)-\lambda(N)=0$, so $\lambda(N)=Q_{f} x(N)$
these are a set of linear equations in the variables

$$
u(0), \ldots, u(N-1), \quad x(1), \ldots, x(N), \quad \lambda(1), \ldots, \lambda(N)
$$

Co-state equations

optimality conditions break into two parts:

$$
x(t+1)=A x(t)+B u(t), \quad x(0)=x_{0}
$$

this recursion for state x runs forward in time, with initial condition

$$
\lambda(t)=A^{T} \lambda(t+1)+Q x(t), \quad \lambda(N)=Q_{f} x(N)
$$

this recursion for λ runs backwards in time, with final condition

- λ is called co-state
- recursion for λ sometimes called adjoint system

Solution via Riccati recursion

we will see that $\lambda(t)=P_{t} x(t)$, where P_{t} is the min-cost-to-go matrix defined by the Riccati recursion
thus, Riccati recursion gives clever way to solve this set of linear equations it holds for $t=N$, since $P_{N}=Q_{f}$ and $\lambda(N)=Q_{f} x(N)$
now suppose it holds for $t+1$, i.e., $\lambda(t+1)=P_{t+1} x(t+1)$
let's show it holds for t, i.e., $\lambda(t)=P_{t} x(t)$
using $x(t+1)=A x(t)+B u(t)$ and $u(t)=-R^{-1} B^{T} \lambda(t+1)$,

$$
\lambda(t+1)=P_{t+1}(A x(t)+B u(t))=P_{t+1}\left(A x(t)-B R^{-1} B^{T} \lambda(t+1)\right)
$$

so

$$
\lambda(t+1)=\left(I+P_{t+1} B R^{-1} B^{T}\right)^{-1} P_{t+1} A x(t)
$$

using $\lambda(t)=A^{T} \lambda(t+1)+Q x(t)$, we get

$$
\lambda(t)=A^{T}\left(I+P_{t+1} B R^{-1} B^{T}\right)^{-1} P_{t+1} A x(t)+Q x(t)=P_{t} x(t)
$$

since by the Riccati recursion

$$
P_{t}=Q+A^{T}\left(I+P_{t+1} B R^{-1} B^{T}\right)^{-1} P_{t+1} A
$$

this proves $\lambda(t)=P_{t} x(t)$
let's check that our two formulas for $u(t)$ are consistent:

$$
\begin{aligned}
u(t) & =-R^{-1} B^{T} \lambda(t+1) \\
& =-R^{-1} B^{T}\left(I+P_{t+1} B R^{-1} B^{T}\right)^{-1} P_{t+1} A x(t) \\
& =-R^{-1}\left(I+B^{T} P_{t+1} B R^{-1}\right)^{-1} B^{T} P_{t+1} A x(t) \\
& =-\left(\left(I+B^{T} P_{t+1} B R^{-1}\right) R\right)^{-1} B^{T} P_{t+1} A x(t) \\
& =-\left(R+B^{T} P_{t+1} B\right)^{-1} B^{T} P_{t+1} A x(t)
\end{aligned}
$$

which is what we had before

