
EE363 Winter 2003-04

Lecture 2

LQR via Lagrange multipliers

• useful matrix identities

• linearly constrained optimization

• LQR via constrained optimization

2–1

Some useful matrix identities

let’s start with a simple one:

Z(I + Z)−1 = I − (I + Z)−1

(provided I + Z is invertible)

to verify this identity, we start with

I = (I + Z)(I + Z)−1 = (I + Z)−1 + Z(I + Z)−1

re-arrange terms to get identity

LQR via Lagrange multipliers 2–2



an identity that’s a bit more complicated:

(I +XY )−1 = I −X(I + Y X)−1Y

(if either inverse exists, then the other does; in fact
det(I +XY ) = det(I + Y X))

to verify:

(

I −X(I + Y X)−1Y
)

(I +XY ) = I +XY −X(I + Y X)−1Y (I +XY )

= I +XY −X(I + Y X)−1(I + Y X)Y

= I +XY −XY = I

LQR via Lagrange multipliers 2–3

another identity:
Y (I +XY )−1 = (I + Y X)−1Y

to verify this one, start with Y (I +XY ) = (I + Y X)Y

then multiply on left by (I + Y X)−1, on right by (I +XY )−1

• note dimensions of inverses not necessarily the same

• mnemonic: lefthand Y moves into inverse, pushes righthand Y out . . .

LQR via Lagrange multipliers 2–4



and one more:

(I +XZ−1Y )−1 = I −X(Z + Y X)−1Y

let’s check:

(

I +X(Z−1Y )
)−1

= I −X
(

I + Z−1Y X
)−1

Z−1Y

= I −X(Z(I + Z−1Y X))−1Y

= I −X(Z + Y X)−1Y

LQR via Lagrange multipliers 2–5

Example: rank one update

• suppose we’ve already calculated or know A−1, where A ∈ Rn×n

• we need to calculate (A+ bcT )−1, where b, c ∈ Rn

(A+ bcT is called a rank one update of A)

we’ll use another identity, called matrix inversion lemma:

(A+ bcT )−1 = A−1 −
1

1 + cTA−1b
(A−1b)(cTA−1)

note that RHS is easy to calculate since we know A−1

LQR via Lagrange multipliers 2–6



more general form of matrix inversion lemma:

(A+BC)−1 = A−1 −A−1B
(

I + CA−1B
)−1

CA−1

let’s verify it:

(A+BC)−1 =
(

A(I +A−1BC)
)−1

= (I + (A−1B)C)−1A−1

=
(

I − (A−1B)(I + C(A−1B))−1C
)

A−1

= A−1 −A−1B(I + CA−1B)−1CA−1

LQR via Lagrange multipliers 2–7

Another formula for the Riccati recursion

Pt−1 = Q+ATPtA−ATPtB(R +BTPtB)−1BTPtA

= Q+ATPt
(

I −B(R +BTPtB)−1BTPt
)

A

= Q+ATPt
(

I −B((I +BTPtBR
−1)R)−1BTPt

)

A

= Q+ATPt
(

I −BR−1(I +BTPtBR
−1)−1BTPt

)

A

= Q+ATPt
(

I +BR−1BTPt
)−1

A

= Q+AT
(

I + PtBR
−1BT

)−1
PtA

or, in pretty, symmetric form:

Pt−1 = Q+ATP
1/2
t

(

I + P
1/2
t BR−1BTP

1/2
t

)−1

P
1/2
t A

LQR via Lagrange multipliers 2–8



Linearly constrained optimization

minimize f(x)
subject to Fx = g

• f : Rn → R is smooth objective function

• F ∈ Rm×n is fat

form Lagrangian L(x, λ) = f(x) + λT (g − Fx) (λ is Lagrange multiplier)

if x is optimal, then

∇xL = ∇f(x)− F Tλ = 0, ∇λL = g − Fx = 0

i.e., ∇f(x) = F Tλ for some λ ∈ Rm

(generalizes optimality condition ∇f(x) = 0 for unconstrained
minimization problem)

LQR via Lagrange multipliers 2–9

Picture

PSfrag replacements

{x | Fx = g}

∇f

∇f

f(x) = constant

∇f(x) = F Tλ for some λ ⇐⇒ ∇f(x) ∈ R(F T ) ⇐⇒ ∇f(x) ⊥ N (F )

LQR via Lagrange multipliers 2–10



Feasible descent direction

suppose x is current, feasible point (i.e., Fx = g)

consider a small step in direction v, to x+ hv (h small, positive)

when is x+ hv better than x?

need x+ hv feasible: F (x+ hv) = g + hFv = g, so Fv = 0

v ∈ N (F ) is called a feasible direction

we need x+ hv to have smaller objective than x:

f(x+ hv) ≈ f(x) + h∇f(x)Tv < f(x)

so we need ∇f(x)Tv < 0 (called a descent direction)

(if ∇f(x)Tv > 0, −v is a descent direction, so we need only ∇f(x)Tv 6= 0)

x is not optimal if there exists a feasible descent direction

LQR via Lagrange multipliers 2–11

if x is optimal, every feasible direction satisfies ∇f(x)Tv = 0

Fv = 0 ⇒ ∇f(x)Tv = 0 ⇐⇒ N (F ) ⊆ N (∇f(x)T )

⇐⇒ R(F T ) ⊇ R(∇f(x))

⇐⇒ ∇f(x) ∈ R(F T )

⇐⇒ ∇f(x) = F Tλ for some λ ∈ Rm

⇐⇒ ∇f(x) ⊥ N (F )

LQR via Lagrange multipliers 2–12



LQR as constrained minimization problem

minimize J = 1
2

∑N−1
t=0

(

x(t)TQx(t) + u(t)TRu(t)
)

+ 1
2x(N)TQfx(N)

subject to x(t+ 1) = Ax(t) +Bu(t), t = 0, . . . , N − 1

• variables are u(0), . . . , u(N − 1) and x(1), . . . , x(N)
(x(0) = x0 is given)

• objective is (convex) quadratic
(factor 1/2 in objective is for convenience)

introduce Lagrange multipliers λ(1), . . . , λ(N) ∈ Rn and form Lagrangian

L = J +

N−1
∑

t=0

λ(t+ 1)T (Ax(t) +Bu(t)− x(t+ 1))

LQR via Lagrange multipliers 2–13

Optimality conditions

we have x(t+ 1) = Ax(t) +Bu(t) for t = 0, . . . , N − 1, x(0) = x0

for t = 0, . . . , N − 1, ∇u(t)L = Ru(t) +BTλ(t+ 1) = 0

hence, u(t) = −R−1BTλ(t+ 1)

for t = 1, . . . , N − 1, ∇x(t)L = Qx(t) +ATλ(t+ 1)− λ(t) = 0

hence, λ(t) = ATλ(t+ 1) +Qx(t)

∇x(N)L = Qfx(N)− λ(N) = 0, so λ(N) = Qfx(N)

these are a set of linear equations in the variables

u(0), . . . , u(N − 1), x(1), . . . , x(N), λ(1), . . . , λ(N)

LQR via Lagrange multipliers 2–14



Co-state equations

optimality conditions break into two parts:

x(t+ 1) = Ax(t) +Bu(t), x(0) = x0

this recursion for state x runs forward in time, with initial condition

λ(t) = ATλ(t+ 1) +Qx(t), λ(N) = Qfx(N)

this recursion for λ runs backwards in time, with final condition

• λ is called co-state

• recursion for λ sometimes called adjoint system

LQR via Lagrange multipliers 2–15

Solution via Riccati recursion

we will see that λ(t) = Ptx(t), where Pt is the min-cost-to-go matrix
defined by the Riccati recursion

thus, Riccati recursion gives clever way to solve this set of linear equations

it holds for t = N , since PN = Qf and λ(N) = Qfx(N)

now suppose it holds for t+ 1, i.e., λ(t+ 1) = Pt+1x(t+ 1)

let’s show it holds for t, i.e., λ(t) = Ptx(t)

using x(t+ 1) = Ax(t) +Bu(t) and u(t) = −R−1BTλ(t+ 1),

λ(t+ 1) = Pt+1(Ax(t) +Bu(t)) = Pt+1(Ax(t)−BR−1BTλ(t+ 1))

so
λ(t+ 1) = (I + Pt+1BR

−1BT )−1Pt+1Ax(t)

LQR via Lagrange multipliers 2–16



using λ(t) = ATλ(t+ 1) +Qx(t), we get

λ(t) = AT (I + Pt+1BR
−1BT )−1Pt+1Ax(t) +Qx(t) = Ptx(t)

since by the Riccati recursion

Pt = Q+AT (I + Pt+1BR
−1BT )−1Pt+1A

this proves λ(t) = Ptx(t)

LQR via Lagrange multipliers 2–17

let’s check that our two formulas for u(t) are consistent:

u(t) = −R−1BTλ(t+ 1)

= −R−1BT (I + Pt+1BR
−1BT )−1Pt+1Ax(t)

= −R−1(I +BTPt+1BR
−1)−1BTPt+1Ax(t)

= −((I +BTPt+1BR
−1)R)−1BTPt+1Ax(t)

= −(R +BTPt+1B)−1BTPt+1Ax(t)

which is what we had before

LQR via Lagrange multipliers 2–18


