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Lecture 8
The Extended Kalman filter

e Nonlinear filtering
e Extended Kalman filter

e Linearization and random variables
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Nonlinear filtering

e nonlinear Markov model:

w(t+1) = fz(t),wt),  y(t)=g(z(t),v(t))

— fis (possibly nonlinear) dynamics function

— g is (possibly nonlinear) measurement or output function
— w(0),w(1),...,v(0),v(1),... are independent

— even if w, v Gaussian, x and y need not be

e nonlinear filtering problem: find, e.g.,

L(t)t=1) = E(z(t)|y(0),...,y(t=1)),  2(tt) = E(z()[y(0),...,y(t))
e general nonlinear filtering solution involves a PDE, and is not practical
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Extended Kalman filter

extended Kalman filter (EKF) is heuristic for nonlinear filtering problem
often works well (when tuned properly), but sometimes not

widely used in practice

e based on
— linearizing dynamics and output functions at current estimate
— propagating an approximation of the conditional expectation and
covariance
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Linearization and random variables
e consider ¢ : R — R™

suppose Ex = 7, E(x — Z)(z — 2)T = X,, and y = ¢(x)
if 32, is small, ¢ is not too nonlinear,

y~§=¢(@)+ Do) (x — 7)
i~ N(6(z), Dop(z)Z,Do(z)")

gives approximation for mean and covariance of nonlinear function of
random variable:

g~ ¢(z), T, ~D¢()L,Dp(z)"

if 2, is not small compared to ‘curvature’ of ¢, these estimates are poor
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e a good estimate can be found by Monte Carlo simulation:
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where 2. (V) are samples from the distribution of z, and N is
large

e another method: use Monte Carlo formulas, with a small number of
nonrandom samples chosen as ‘typical’, e.g., the 90% confidence
ellipsoid semi-axis endpoints

) =z + Bu;, Y, = VAVT
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Example

x~N(0,1), y = exp(x)

(for this case we can compute mean and variance of y exactly)

(] Oy
exact values el/?2 =1.649 Ve —e=2.161
linearization 1.000 1.000
Monte Carlo (N = 10) 1.385 1.068
Monte Carlo (N = 100) 1.430 1.776
Sigma points (z =z, Z + 1.50,) 1.902 2.268
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Extended Kalman filter

e initialization: (0| — 1) = Zg, X(0] — 1) = Xg

e measurement update

— linearize output function at x = &(t|t — 1):

dg , .

C = (@t —1),0
_ 99 s — 99 stlt — 1).0)"
Vo= - 1,002, 2w - 1),0)

— measurement update based on linearization

j(t‘t) — jf(t|t - 1) —|— Eﬂt_lCT (CEﬂt_lCT —|— V)_l . e
- (y(t) — g(2(t]t — 1),0))
—1
Y = -1 — 2t|t—1CT (CEﬂt—lCT + V) CYyje—1
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e time update

— linearize dynamics function at z = Z(t|t):

4 = .o
ar of
W= 059l @i, 0

— time update based on linearization

B(t+116) = F(2(10,0),  Serre = ADyeA” + W

e replacing linearization with Monte Carlo yields particle filter

e replacing linearization with sigma-point estimates yields unscented
Kalman filter (UKF)
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Example

e p(t), u(t) € R are position and velocity of vehicle, with

(p(0),u(0)) ~ N(0, 1)
e vehicle dynamics:

plt+1) = p(t) +0.1u(t),  u(t+1) = [ IR ]u(t) +w(t)

w(t) are 11D NV(0,1)

e measurements: noisy measurements of distance to 9 points p; € R?

yi(t) = [Ip(t) — pil| +vi(t), i=1,...,9,

v;(t) are 11D N(0,0.3?)
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EKF results

e EKF initialized with £(0| — 1) =0, (0| — 1) = I, where x = (p, u)

e p; shown as stars; p(t) as dotted curve; p(t|t) as solid curve

D2

D1

The Extended Kalman filter 8-10



Current position estimation error

|p(t|t) — p(t)|| versus t
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Current position estimation predicted error

(S(tt)11 + S(E[t)a2)"? versus t

0.2

L L L L L L L L L
0 100 200 300 400 500 600 700 800 900 1000

The Extended Kalman filter 8-12



