Lecture 8 The Extended Kalman filter

- Nonlinear filtering
- Extended Kalman filter
- Linearization and random variables

8–1

Nonlinear filtering

• nonlinear Markov model:

 $x(t+1) = f(x(t), w(t)), \qquad y(t) = g(x(t), v(t))$

- f is (possibly nonlinear) dynamics function - g is (possibly nonlinear) measurement or output function - $w(0), w(1), \ldots, v(0), v(1), \ldots$ are independent - even if w, v Gaussian, x and y need not be

• nonlinear filtering problem: find, e.g.,

$$\hat{x}(t|t-1) = \mathbf{E}(x(t)|y(0), \dots, y(t-1)), \qquad \hat{x}(t|t) = \mathbf{E}(x(t)|y(0), \dots, y(t))$$

• general nonlinear filtering solution involves a PDE, and is not practical

- extended Kalman filter (EKF) is *heuristic* for nonlinear filtering problem
- often works well (when tuned properly), but sometimes not
- widely used in practice
- based on
 - linearizing dynamics and output functions at current estimate
 propagating an approximation of the conditional expectation and covariance

The Extended Kalman filter

8–3

Linearization and random variables

- consider $\phi : \mathbf{R}^n \to \mathbf{R}^m$
- suppose $\mathbf{E} x = \bar{x}$, $\mathbf{E}(x \bar{x})(x \bar{x})^T = \Sigma_x$, and $y = \phi(x)$
- if Σ_x is small, ϕ is not too nonlinear,

$$y \approx \tilde{y} = \phi(\bar{x}) + D\phi(\bar{x})(x - \bar{x})$$
$$\tilde{y} \sim \mathcal{N}(\phi(\bar{x}), D\phi(\bar{x})\Sigma_x D\phi(\bar{x})^T)$$

• gives *approximation* for mean and covariance of nonlinear function of random variable:

$$\bar{y} \approx \phi(\bar{x}), \qquad \Sigma_y \approx D\phi(\bar{x})\Sigma_x D\phi(\bar{x})^T$$

• if Σ_x is not small compared to 'curvature' of ϕ , these estimates are poor

• a good estimate can be found by Monte Carlo simulation:

$$\bar{y} \approx \bar{y}^{\mathrm{mc}} = \frac{1}{N} \sum_{i=1}^{N} \phi(x^{(i)})$$

$$\Sigma_{y} \approx \frac{1}{N} \sum_{i=1}^{N} \left(\phi(x^{(i)}) - \bar{y}^{\mathrm{mc}} \right) \left(\phi(x^{(i)}) - \bar{y}^{\mathrm{mc}} \right)^{T}$$

where $x^{(1)}, \ldots, x^{(N)}$ are samples from the distribution of x, and N is large

• another method: use Monte Carlo formulas, with a small number of nonrandom samples chosen as 'typical', e.g., the 90% confidence ellipsoid semi-axis endpoints

$$x^{(i)} = \bar{x} \pm \beta v_i, \qquad \Sigma_x = V \Lambda V^T$$

The Extended Kalman filter

8–5

Example

 $x \sim \mathcal{N}(0, 1), y = \exp(x)$

(for this case we can compute mean and variance of y exactly)

	$ar{y}$	σ_y
exact values	$e^{1/2} = 1.649$	$\sqrt{e^2 - e} = 2.161$
linearization	1.000	1.000
Monte Carlo ($N = 10$)	1.385	1.068
Monte Carlo ($N = 100$)	1.430	1.776
Sigma points $(x = \bar{x}, \ \bar{x} \pm 1.5\sigma_x)$	1.902	2.268

Extended Kalman filter

- initialization: $\hat{x}(0|-1) = \bar{x}_0$, $\Sigma(0|-1) = \Sigma_0$
- measurement update
 - linearize output function at $x = \hat{x}(t|t-1)$:

$$C = \frac{\partial g}{\partial x}(\hat{x}(t|t-1), 0)$$
$$V = \frac{\partial g}{\partial v}(\hat{x}(t|t-1), 0)\Sigma_v \frac{\partial g}{\partial v}(\hat{x}(t|t-1), 0)^T$$

- measurement update based on linearization

$$\hat{x}(t|t) = \hat{x}(t|t-1) + \sum_{t|t-1} C^T \left(C \sum_{t|t-1} C^T + V \right)^{-1} \dots \\ \dots \left(y(t) - g(\hat{x}(t|t-1), 0) \right)$$
$$\Sigma_{t|t} = \sum_{t|t-1} \sum_{t|t-1} C^T \left(C \sum_{t|t-1} C^T + V \right)^{-1} C \sum_{t|t-1} C^T \left(C \sum_{t|t-1} C^T + V \right)^{-1} C \sum_{t|t-1} C^T \left(C \sum_{t|t-1} C^T + V \right)^{-1} C \sum_{t|t-1} C^T \left(C \sum_{t|t-1} C^T + V \right)^{-1} C \sum_{t|t-1} C^T \left(C \sum_{t|t-1} C^T + V \right)^{-1} C \sum_{t|t-1} C^T \left(C \sum_{t|t-1} C^T + V \right)^{-1} C \sum_{t|t-1} C^T \left(C \sum_{t|t-1} C^T + V \right)^{-1} C \sum_{t|t-1} C^T \left(C \sum_{t|t-1} C^T + V \right)^{-1} C \sum_{t|t-1} C^T \left(C \sum_{t|t-1} C^T + V \right)^{-1} C \sum_{t|t-1} C^T \left(C \sum_{t|t-1} C^T + V \right)^{-1} C \sum_{t|t-1} C^T \left(C \sum_{t|t-1} C^T + V \right)^{-1} C \sum_{t|t-1} C^T \left(C \sum_{t|t-1} C^T + V \right)^{-1} C \sum_{t|t-1} C^T \left(C \sum_{t|t-1} C^T + V \right)^{-1} C \sum_{t|t-1} C^T \left(C \sum_{t|t-1} C^T + V \right)^{-1} C \sum_{t|t-1} C^T \left(C \sum_{t|t-1} C^T + V \right)^{-1} C \sum_{t|t-1} C \sum_{t|t-1} C^T \left(C \sum_{t|t-1} C^T + V \right)^{-1} C \sum_{t|t-1} C$$

The Extended Kalman filter

- time update
 - linearize dynamics function at $x = \hat{x}(t|t)$:

$$A = \frac{\partial f}{\partial x}(\hat{x}(t|t), 0)$$
$$W = \frac{\partial f}{\partial w}(\hat{x}(t|t), 0)\Sigma_w \frac{\partial f}{\partial w}(\hat{x}(t|t), 0)^T$$

- time update based on linearization

$$\hat{x}(t+1|t) = f(\hat{x}(t|t), 0), \qquad \Sigma_{t+1|t} = A\Sigma_{t|t}A^T + W$$

- replacing linearization with Monte Carlo yields particle filter
- replacing linearization with sigma-point estimates yields *unscented Kalman filter* (UKF)

8–7

Example

- $p(t),\,u(t)\in {\bf R}^2$ are position and velocity of vehicle, with $(p(0),u(0))\sim \mathcal{N}(0,I)$
- vehicle dynamics:

$$p(t+1) = p(t) + 0.1u(t),$$
 $u(t+1) = \begin{bmatrix} 0.85 & 0.15\\ -0.1 & 0.85 \end{bmatrix} u(t) + w(t)$

w(t) are IID $\mathcal{N}(0, I)$

• measurements: noisy measurements of distance to 9 points $p_i \in \mathbf{R}^2$

$$y_i(t) = ||p(t) - p_i|| + v_i(t), \quad i = 1, \dots, 9,$$

 $v_i(t)$ are IID $\mathcal{N}(0, 0.3^2)$

The Extended Kalman filter

8–9

EKF results

- EKF initialized with $\hat{x}(0|-1)=0,$ $\Sigma(0|-1)=I,$ where x=(p,u)
- p_i shown as stars; p(t) as dotted curve; $\hat{p}(t|t)$ as solid curve

Current position estimation error


```
The Extended Kalman filter
```

Current position estimation predicted error

8–11