Lecture 11 Eigenvectors and diagonalization

- eigenvectors
- dynamic interpretation: invariant sets
- complex eigenvectors \& invariant planes
- left eigenvectors
- diagonalization
- modal form
- discrete-time stability

Eigenvectors and eigenvalues

$\lambda \in \mathbf{C}$ is an eigenvalue of $A \in \mathbf{C}^{n \times n}$ if

$$
\mathcal{X}(\lambda)=\operatorname{det}(\lambda I-A)=0
$$

equivalent to:

- there exists nonzero $v \in \mathbf{C}^{n}$ s.t. $(\lambda I-A) v=0$, i.e.,

$$
A v=\lambda v
$$

any such v is called an eigenvector of A (associated with eigenvalue λ)

- there exists nonzero $w \in \mathbf{C}^{n}$ s.t. $w^{T}(\lambda I-A)=0$, i.e.,

$$
w^{T} A=\lambda w^{T}
$$

any such w is called a left eigenvector of A

- if v is an eigenvector of A with eigenvalue λ, then so is αv, for any $\alpha \in \mathbf{C}, \alpha \neq 0$
- even when A is real, eigenvalue λ and eigenvector v can be complex
- when A and λ are real, we can always find a real eigenvector v associated with λ : if $A v=\lambda v$, with $A \in \mathbf{R}^{n \times n}, \lambda \in \mathbf{R}$, and $v \in \mathbf{C}^{n}$, then

$$
A \Re v=\lambda \Re v, \quad A \Im v=\lambda \Im v
$$

so $\Re v$ and $\Im v$ are real eigenvectors, if they are nonzero (and at least one is)

- conjugate symmetry: if A is real and $v \in \mathbf{C}^{n}$ is an eigenvector associated with $\lambda \in \mathbf{C}$, then \bar{v} is an eigenvector associated with $\bar{\lambda}$:
taking conjugate of $A v=\lambda v$ we get $\overline{A v}=\overline{\lambda v}$, so

$$
A \bar{v}=\bar{\lambda} \bar{v}
$$

we'll assume A is real from now on . . .

Scaling interpretation

(assume $\lambda \in \mathbf{R}$ for now; we'll consider $\lambda \in \mathbf{C}$ later)
if v is an eigenvector, effect of A on v is very simple: scaling by λ

(what is λ here?)

- $\lambda \in \mathbf{R}, \lambda>0: v$ and $A v$ point in same direction
- $\lambda \in \mathbf{R}, \lambda<0: v$ and $A v$ point in opposite directions
- $\lambda \in \mathbf{R},|\lambda|<1: A v$ smaller than v
- $\lambda \in \mathbf{R},|\lambda|>1: A v$ larger than v
(we'll see later how this relates to stability of continuous- and discrete-time systems. . .)

Dynamic interpretation

suppose $A v=\lambda v, v \neq 0$
if $\dot{x}=A x$ and $x(0)=v$, then $x(t)=e^{\lambda t} v$
several ways to see this, e.g.,

$$
\begin{aligned}
x(t)=e^{t A} v & =\left(I+t A+\frac{(t A)^{2}}{2!}+\cdots\right) v \\
& =v+\lambda t v+\frac{(\lambda t)^{2}}{2!} v+\cdots \\
& =e^{\lambda t} v
\end{aligned}
$$

$\left(\right.$ since $\left.(t A)^{k} v=(\lambda t)^{k} v\right)$

- for $\lambda \in \mathbf{C}$, solution is complex (we'll interpret later); for now, assume $\lambda \in \mathbf{R}$
- if initial state is an eigenvector v, resulting motion is very simple always on the line spanned by v
- solution $x(t)=e^{\lambda t} v$ is called mode of system $\dot{x}=A x$ (associated with eigenvalue λ)
- for $\lambda \in \mathbf{R}, \lambda<0$, mode contracts or shrinks as $t \uparrow$
- for $\lambda \in \mathbf{R}, \lambda>0$, mode expands or grows as $t \uparrow$

Invariant sets

a set $S \subseteq \mathbf{R}^{n}$ is invariant under $\dot{x}=A x$ if whenever $x(t) \in S$, then $x(\tau) \in S$ for all $\tau \geq t$
i.e.: once trajectory enters S, it stays in S

vector field interpretation: trajectories only cut into S, never out
suppose $A v=\lambda v, v \neq 0, \lambda \in \mathbf{R}$

- line $\{t v \mid t \in \mathbf{R}\}$ is invariant (in fact, ray $\{t v \mid t>0\}$ is invariant)
- if $\lambda<0$, line segment $\{t v \mid 0 \leq t \leq a\}$ is invariant

Complex eigenvectors

suppose $A v=\lambda v, v \neq 0, \lambda$ is complex
for $a \in \mathbf{C}$, (complex) trajectory $a e^{\lambda t} v$ satisfies $\dot{x}=A x$ hence so does (real) trajectory

$$
\begin{aligned}
x(t) & =\Re\left(a e^{\lambda t} v\right) \\
& =e^{\sigma t}\left[\begin{array}{ll}
v_{\mathrm{re}} & v_{\mathrm{im}}
\end{array}\right]\left[\begin{array}{cc}
\cos \omega t & \sin \omega t \\
-\sin \omega t & \cos \omega t
\end{array}\right]\left[\begin{array}{c}
\alpha \\
-\beta
\end{array}\right]
\end{aligned}
$$

where

$$
v=v_{\mathrm{re}}+j v_{\mathrm{im}}, \quad \lambda=\sigma+j \omega, \quad a=\alpha+j \beta
$$

- trajectory stays in invariant plane $\operatorname{span}\left\{v_{\mathrm{re}}, v_{\mathrm{im}}\right\}$
- σ gives logarithmic growth/decay factor
- ω gives angular velocity of rotation in plane

Dynamic interpretation: left eigenvectors

suppose $w^{T} A=\lambda w^{T}, w \neq 0$
then

$$
\frac{d}{d t}\left(w^{T} x\right)=w^{T} \dot{x}=w^{T} A x=\lambda\left(w^{T} x\right)
$$

i.e., $w^{T} x$ satisfies the $\operatorname{DE} d\left(w^{T} x\right) / d t=\lambda\left(w^{T} x\right)$
hence $w^{T} x(t)=e^{\lambda t} w^{T} x(0)$

- even if trajectory x is complicated, $w^{T} x$ is simple
- if, e.g., $\lambda \in \mathbf{R}, \lambda<0$, halfspace $\left\{z \mid w^{T} z \leq a\right\}$ is invariant (for $a \geq 0$)
- for $\lambda=\sigma+j \omega \in \mathbf{C},(\Re w)^{T} x$ and $(\Im w)^{T} x$ both have form

$$
e^{\sigma t}(\alpha \cos (\omega t)+\beta \sin (\omega t))
$$

Summary

- right eigenvectors are initial conditions from which resulting motion is simple (i.e., remains on line or in plane)
- left eigenvectors give linear functions of state that are simple, for any initial condition
example 1: $\dot{x}=\left[\begin{array}{rrr}-1 & -10 & -10 \\ 1 & 0 & 0 \\ 0 & 1 & 0\end{array}\right] x$
block diagram:

$\mathcal{X}(s)=s^{3}+s^{2}+10 s+10=(s+1)\left(s^{2}+10\right)$
eigenvalues are $-1, \pm j \sqrt{10}$
trajectory with $x(0)=(0,-1,1)$:

left eigenvector asssociated with eigenvalue -1 is

$$
g=\left[\begin{array}{r}
0.1 \\
0 \\
1
\end{array}\right]
$$

let's check $g^{T} x(t)$ when $x(0)=(0,-1,1)$ (as above):

Eigenvectors and diagonalization
eigenvector associated with eigenvalue $j \sqrt{10}$ is

$$
v=\left[\begin{array}{r}
-0.554+j 0.771 \\
0.244+j 0.175 \\
0.055-j 0.077
\end{array}\right]
$$

so an invariant plane is spanned by

$$
v_{\mathrm{re}}=\left[\begin{array}{r}
-0.554 \\
0.244 \\
0.055
\end{array}\right], \quad v_{\mathrm{im}}=\left[\begin{array}{r}
0.771 \\
0.175 \\
-0.077
\end{array}\right]
$$

for example, with $x(0)=v_{\text {re }}$ we have

Example 2: Markov chain

probability distribution satisfies $p(t+1)=P p(t)$
$p_{i}(t)=\operatorname{Prob}(z(t)=i)$ so $\sum_{i=1}^{n} p_{i}(t)=1$
$P_{i j}=\operatorname{Prob}(z(t+1)=i \mid z(t)=j)$, so $\sum_{i=1}^{n} P_{i j}=1$
(such matrices are called stochastic)
rewrite as:

$$
\left[\begin{array}{llll}
1 & 1 & \cdots & 1
\end{array}\right] P=\left[\begin{array}{llll}
1 & 1 & \cdots & 1
\end{array}\right]
$$

i.e., $\left[\begin{array}{llll}1 & 1 & \cdots & 1\end{array}\right]$ is a left eigenvector of P with e.v. 1
hence $\operatorname{det}(I-P)=0$, so there is a right eigenvector $v \neq 0$ with $P v=v$
it can be shown that v can be chosen so that $v_{i} \geq 0$, hence we can normalize v so that $\sum_{i=1}^{n} v_{i}=1$
interpretation: v is an equilibrium distribution; i.e., if $p(0)=v$ then $p(t)=v$ for all $t \geq 0$
(if v is unique it is called the steady-state distribution of the Markov chain)

Diagonalization

suppose v_{1}, \ldots, v_{n} is a linearly independent set of eigenvectors of $A \in \mathbf{R}^{n \times n}$:

$$
A v_{i}=\lambda_{i} v_{i}, \quad i=1, \ldots, n
$$

express as

$$
A\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right]=\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right]\left[\begin{array}{lll}
\lambda_{1} & & \\
& \ddots & \\
& & \lambda_{n}
\end{array}\right]
$$

define $T=\left[\begin{array}{lll}v_{1} & \cdots & v_{n}\end{array}\right]$ and $\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$, so

$$
A T=T \Lambda
$$

and finally

$$
T^{-1} A T=\Lambda
$$

- T invertible since v_{1}, \ldots, v_{n} linearly independent
- similarity transformation by T diagonalizes A
conversely if there is a $T=\left[\begin{array}{lll}v_{1} & \cdots & v_{n}\end{array}\right]$ s.t.

$$
T^{-1} A T=\Lambda=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{n}\right)
$$

then $A T=T \Lambda$, i.e.,

$$
A v_{i}=\lambda_{i} v_{i}, \quad i=1, \ldots, n
$$

so v_{1}, \ldots, v_{n} is a linearly independent set of eigenvectors of A we say A is diagonalizable if

- there exists T s.t. $T^{-1} A T=\Lambda$ is diagonal
- A has a set of linearly independent eigenvectors (if A is not diagonalizable, it is sometimes called defective)

Not all matrices are diagonalizable

example: $A=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]$
characteristic polynomial is $\mathcal{X}(s)=s^{2}$, so $\lambda=0$ is only eigenvalue eigenvectors satisfy $A v=0 v=0$, i.e.

$$
\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right]\left[\begin{array}{l}
v_{1} \\
v_{2}
\end{array}\right]=0
$$

so all eigenvectors have form $v=\left[\begin{array}{c}v_{1} \\ 0\end{array}\right]$ where $v_{1} \neq 0$
thus, A cannot have two independent eigenvectors

Distinct eigenvalues

fact: if A has distinct eigenvalues, i.e., $\lambda_{i} \neq \lambda_{j}$ for $i \neq j$, then A is diagonalizable
(the converse is false - A can have repeated eigenvalues but still be diagonalizable)

Diagonalization and left eigenvectors

rewrite $T^{-1} A T=\Lambda$ as $T^{-1} A=\Lambda T^{-1}$, or

$$
\left[\begin{array}{c}
w_{1}^{T} \\
\vdots \\
w_{n}^{T}
\end{array}\right] A=\Lambda\left[\begin{array}{c}
w_{1}^{T} \\
\vdots \\
w_{n}^{T}
\end{array}\right]
$$

where $w_{1}^{T}, \ldots, w_{n}^{T}$ are the rows of T^{-1}
thus

$$
w_{i}^{T} A=\lambda_{i} w_{i}^{T}
$$

i.e., the rows of T^{-1} are (lin. indep.) left eigenvectors, normalized so that

$$
w_{i}^{T} v_{j}=\delta_{i j}
$$

(i.e., left \& right eigenvectors chosen this way are dual bases)

Modal form

suppose A is diagonalizable by T
define new coordinates by $x=T \tilde{x}$, so

$$
T \dot{\tilde{x}}=A T \tilde{x} \quad \Leftrightarrow \quad \dot{\tilde{x}}=T^{-1} A T \tilde{x} \quad \Leftrightarrow \quad \dot{\tilde{x}}=\Lambda \tilde{x}
$$

in new coordinate system, system is diagonal (decoupled):

trajectories consist of n independent modes, i.e.,

$$
\tilde{x}_{i}(t)=e^{\lambda_{i} t} \tilde{x}_{i}(0)
$$

hence the name modal form

Real modal form

when eigenvalues (hence T) are complex, system can be put in real modal form:

$$
S^{-1} A S=\operatorname{diag}\left(\Lambda_{r},\left[\begin{array}{cc}
\sigma_{r+1} & \omega_{r+1} \\
-\omega_{r+1} & \sigma_{r+1}
\end{array}\right], \ldots,\left[\begin{array}{cc}
\sigma_{n} & \omega_{n} \\
-\omega_{n} & \sigma_{n}
\end{array}\right]\right)
$$

where $\Lambda_{r}=\operatorname{diag}\left(\lambda_{1}, \ldots, \lambda_{r}\right)$ are the real eigenvalues, and

$$
\lambda_{i}=\sigma_{i}+j \omega_{i}, \quad i=r+1, \ldots, n
$$

are the complex eigenvalues
block diagram of 'complex mode':

diagonalization simplifies many matrix expressions e.g., resolvent:

$$
\begin{aligned}
(s I-A)^{-1} & =\left(s T T^{-1}-T \Lambda T^{-1}\right)^{-1} \\
& =\left(T(s I-\Lambda) T^{-1}\right)^{-1} \\
& =T(s I-\Lambda)^{-1} T^{-1} \\
& =T \operatorname{diag}\left(\frac{1}{s-\lambda_{1}}, \ldots, \frac{1}{s-\lambda_{n}}\right) T^{-1}
\end{aligned}
$$

powers (i.e., discrete-time solution):

$$
\begin{aligned}
A^{k} & =\left(T \Lambda T^{-1}\right)^{k} \\
& =\left(T \Lambda T^{-1}\right) \cdots\left(T \Lambda T^{-1}\right) \\
& =T \Lambda^{k} T^{-1} \\
& =T \operatorname{diag}\left(\lambda_{1}^{k}, \ldots, \lambda_{n}^{k}\right) T^{-1}
\end{aligned}
$$

(for $k<0$ only if A invertible, i.e., all $\lambda_{i} \neq 0$)
exponential (i.e., continuous-time solution):

$$
\begin{aligned}
e^{A} & =I+A+A^{2} / 2!+\cdots \\
& =I+T \Lambda T^{-1}+\left(T \Lambda T^{-1}\right)^{2} / 2!+\cdots \\
& =T\left(I+\Lambda+\Lambda^{2} / 2!+\cdots\right) T^{-1} \\
& =T e^{\Lambda} T^{-1} \\
& =T \operatorname{diag}\left(e^{\lambda_{1}}, \ldots, e^{\lambda_{n}}\right) T^{-1}
\end{aligned}
$$

for any analytic function $f: \mathbf{R} \rightarrow \mathbf{R}$ (i.e., given by power series) we can define $f(A)$ for $A \in \mathbf{R}^{n \times n}$ (i.e., overload f) as

$$
f(A)=\beta_{0} I+\beta_{1} A+\beta_{2} A^{2}+\beta_{3} A^{3}+\cdots
$$

where

$$
f(a)=\beta_{0}+\beta_{1} a+\beta_{2} a^{2}+\beta_{3} a^{3}+\cdots
$$

Solution via diagonalization

assume A is diagonalizable
consider LDS $\dot{x}=A x$, with $T^{-1} A T=\Lambda$
then

$$
\begin{aligned}
x(t) & =e^{t A} x(0) \\
& =T e^{\Lambda t} T^{-1} x(0) \\
& =\sum_{i=1}^{n} e^{\lambda_{i} t}\left(w_{i}^{T} x(0)\right) v_{i}
\end{aligned}
$$

thus: any trajectory can be expressed as linear combination of modes

interpretation:

- (left eigenvectors) decompose initial state $x(0)$ into modal components $w_{i}^{T} x(0)$
- $e^{\lambda_{i} t}$ term propagates i th mode forward t seconds
- reconstruct state as linear combination of (right) eigenvectors
application: for what $x(0)$ do we have $x(t) \rightarrow 0$ as $t \rightarrow \infty$?
divide eigenvalues into those with negative real parts

$$
\Re \lambda_{1}<0, \ldots, \Re \lambda_{s}<0
$$

and the others,

$$
\Re \lambda_{s+1} \geq 0, \ldots, \Re \lambda_{n} \geq 0
$$

from

$$
x(t)=\sum_{i=1}^{n} e^{\lambda_{i} t}\left(w_{i}^{T} x(0)\right) v_{i}
$$

condition for $x(t) \rightarrow 0$ is:

$$
x(0) \in \operatorname{span}\left\{v_{1}, \ldots, v_{s}\right\}
$$

or equivalently,

$$
w_{i}^{T} x(0)=0, \quad i=s+1, \ldots, n
$$

(can you prove this?)

Stability of discrete-time systems

suppose A diagonalizable
consider discrete-time LDS $x(t+1)=A x(t)$
if $A=T \Lambda T^{-1}$, then $A^{k}=T \Lambda^{k} T^{-1}$
then

$$
x(t)=A^{t} x(0)=\sum_{i=1}^{n} \lambda_{i}^{t}\left(w_{i}^{T} x(0)\right) v_{i} \rightarrow 0 \quad \text { as } t \rightarrow \infty
$$

for all $x(0)$ if and only if

$$
\left|\lambda_{i}\right|<1, \quad i=1, \ldots, n
$$

we will see later that this is true even when A is not diagonalizable, so we have
fact: $x(t+1)=A x(t)$ is stable if and only if all eigenvalues of A have magnitude less than one

