Lecture 1
 Linear quadratic regulator: Discrete-time finite horizon

- LQR cost function
- multi-objective interpretation
- LQR via least-squares
- dynamic programming solution
- steady-state LQR control
- extensions: time-varying systems, tracking problems

LQR problem: background

discrete-time system $x(t+1)=A x(t)+B u(t), x(0)=x_{0}$
problem: choose $u(0), u(1), \ldots$ so that

- $x(0), x(1), \ldots$ is 'small', i.e., we get good regulation or control
- $u(0), u(1), \ldots$ is 'small', i.e., using small input effort or actuator authority
- we'll define 'small' soon
- these are usually competing objectives, e.g., a large u can drive x to zero fast
linear quadratic regulator (LQR) theory addresses this question

LQR cost function

we define quadratic cost function

$$
J(U)=\sum_{\tau=0}^{N-1}\left(x(\tau)^{T} Q x(\tau)+u(\tau)^{T} R u(\tau)\right)+x(N)^{T} Q_{f} x(N)
$$

where $U=(u(0), \ldots, u(N-1))$ and

$$
Q=Q^{T} \geq 0, \quad Q_{f}=Q_{f}^{T} \geq 0, \quad R=R^{T}>0
$$

are given state cost, final state cost, and input cost matrices

- N is called time horizon (we'll consider $N=\infty$ later)
- first term measures state deviation
- second term measures input size or actuator authority
- last term measures final state deviation
- Q, R set relative weights of state deviation and input usage
- $R>0$ means any (nonzero) input adds to cost J

LQR problem: find $u_{\operatorname{lqr}}(0), \ldots, u_{\mathrm{lqr}}(N-1)$ that minimizes $J(U)$

Comparison to least-norm input

c.f. least-norm input that steers x to $x(N)=0$:

- no cost attached to $x(0), \ldots, x(N-1)$
- $x(N)$ must be exactly zero
we can approximate the least-norm input by taking

$$
R=I, \quad Q=0, \quad Q_{f} \text { large, e.g., } Q_{f}=10^{8} I
$$

Multi-objective interpretation

common form for Q and R :

$$
R=\rho I, \quad Q=Q_{f}=C^{T} C
$$

where $C \in \mathbf{R}^{p \times n}$ and $\rho \in \mathbf{R}, \rho>0$
cost is then

$$
J(U)=\sum_{\tau=0}^{N}\|y(\tau)\|^{2}+\rho \sum_{\tau=0}^{N-1}\|u(\tau)\|^{2}
$$

where $y=C x$
here $\sqrt{\rho}$ gives relative weighting of output norm and input norm

Input and output objectives

fix $x(0)=x_{0}$ and horizon N; for any input $U=(u(0), \ldots, u(N-1))$ define

- input cost $J_{\mathrm{in}}(U)=\sum_{\tau=0}^{N-1}\|u(\tau)\|^{2}$
- output cost $J_{\text {out }}(U)=\sum_{\tau=0}^{N}\|y(\tau)\|^{2}$
these are (competing) objectives; we want both small

LQR quadratic cost is $J_{\text {out }}+\rho J_{\text {in }}$
plot $\left(J_{\text {in }}, J_{\text {out }}\right)$ for all possible U :

- shaded area shows $\left(J_{\mathrm{in}}, J_{\text {out }}\right)$ achieved by some U
- clear area shows $\left(J_{\text {in }}, J_{\text {out }}\right)$ not achieved by any U
three sample inputs U_{1}, U_{2}, and U_{3} are shown
- U_{3} is worse than U_{2} on both counts (J_{in} and $J_{\text {out }}$)
- U_{1} is better than U_{2} in J_{in}, but worse in $J_{\text {out }}$
interpretation of LQR quadratic cost:

$$
J=J_{\text {out }}+\rho J_{\mathrm{in}}=\mathrm{constant}
$$

corresponds to a line with slope $-\rho$ on $\left(J_{\text {in }}, J_{\text {out }}\right)$ plot

- LQR optimal input is at boundary of shaded region, just touching line of smallest possible J
- u_{2} is LQR optimal for ρ shown
- by varying ρ from 0 to $+\infty$, can sweep out optimal tradeoff curve

LQR via least-squares

LQR can be formulated (and solved) as a (large) least-squares problem
note that $X=(x(0), \ldots x(N))$ is a linear function of $x(0)$ and $U=(u(0), \ldots, u(N-1))$:

$$
\left[\begin{array}{c}
x(1) \\
x(2) \\
\vdots \\
x(N)
\end{array}\right]=\left[\begin{array}{cccc}
B & 0 & \cdots & \\
A B & B & 0 & \cdots \\
\vdots & \vdots & & \\
A^{N-1} B & A^{N-2} B & \cdots & B
\end{array}\right]\left[\begin{array}{c}
u(0) \\
u(1) \\
\vdots \\
u(N-1)
\end{array}\right]+\left[\begin{array}{c}
A \\
A^{2} \\
\vdots \\
A^{N}
\end{array}\right] x(0)
$$

can express as $X=G U+H x(0)$, where $G \in \mathbf{R}^{N n \times N m}, H \in \mathbf{R}^{N n \times n}$
can express LQR cost as

$$
\begin{aligned}
J(U) & =\left\|\operatorname{diag}\left(Q^{1 / 2}, \ldots, Q^{1 / 2}, Q_{f}^{1 / 2}\right)(G U+H x(0))\right\|^{2} \\
& +\left\|\operatorname{diag}\left(R^{1 / 2}, \ldots, R^{1 / 2}\right) U\right\|^{2}
\end{aligned}
$$

this is just a (big) least-squares problem
this solution method requires forming and solving a least-squares problem with size that grows with N

Dynamic programming solution

- gives an efficient, recursive method to solve LQR least-squares problem
- useful and important idea on its own
for $t=0, \ldots, N$ define the value function $V_{t}: \mathbf{R}^{n} \rightarrow \mathbf{R}$ by

$$
V_{t}(z)=\min _{u(t), \ldots, u(N-1)} \sum_{\tau=t}^{N-1}\left(x(\tau)^{T} Q x(\tau)+u(\tau)^{T} R u(\tau)\right)+x(N)^{T} Q_{f} x(N)
$$

subject to $x(t)=z, x(\tau+1)=A x(\tau)+B u(\tau)$

- $V_{t}(z)$ gives the minimum LQR cost-to-go, starting from state z at time t
- $V_{0}\left(x_{0}\right)$ is $\min \mathrm{LQR}$ cost (from state x_{0} at time 0)
we will find that
- V_{t} is quadratic, i.e., $V_{t}(z)=z^{T} P_{t} z$, where $P_{t}=P_{t}^{T} \geq 0$
- P_{t} can be found recursively, working backwards from $t=N$
- the LQR optimal u is easily expressed in terms of P_{t}
cost-to-go with no time left is just final state cost:

$$
V_{N}(z)=z^{T} Q_{f} z
$$

thus we have $P_{N}=Q_{f}$

Dynamic programming principle

now suppose we know $V_{t+1}(z)$
what is the optimal choice for $u(t)$?
choice of $u(t)$ affects

- current cost incurred (through $u(t)^{T} R u(t)$)
- where we land, i.e., $x(t+1)$ (hence, the min-cost-to-go from $x(t+1)$)

dynamic programming (DP) principle:

$$
V_{t}(z)=\min _{w}\left(z^{T} Q z+w^{T} R w+V_{t+1}(A z+B w)\right)
$$

- $z^{T} Q z+w^{T} R w$ is cost incurred at time t if $u(t)=w$; $V_{t+1}(A z+B w)$ is min cost-to-go from where you land at $t+1$
- follows from fact that we can minimize in any order:

$$
\min _{w_{1}, \ldots, w_{k}} f\left(w_{1}, \ldots, w_{k}\right)=\min _{w_{1}} \underbrace{\left(\min _{w_{2}, \ldots, w_{k}} f\left(w_{1}, \ldots, w_{k}\right)\right)}_{\text {a fct of } w_{1}}
$$

in words:
\min cost-to-go from where you are $=\mathrm{min}$ over (current cost incurred + min cost-to-go from where you land)

Example: path optimization

- edges show possible flights; each has some cost
- want to find min cost route or path from SF to NY

dynamic programming (DP):
- $V(i)$ is min cost from airport i to NY , over all possible paths
- to find min cost from city i to NY: minimize sum of flight cost plus min cost to NY from where you land, over all flights out of city i (gives optimal flight out of city i on way to NY)
- if we can find $V(i)$ for each i, we can find min cost path from any city to NY
- DP principle: $V(i)=\min _{j}\left(c_{j i}+V(j)\right)$, where $c_{j i}$ is cost of flight from i to j, and minimum is over all possible flights out of i

HJ equation for LQR

$$
V_{t}(z)=z^{T} Q z+\min _{w}\left(w^{T} R w+V_{t+1}(A z+B w)\right)
$$

- called DP, Bellman, or Hamilton-Jacobi equation
- gives V_{t} recursively, in terms of V_{t+1}
- any minimizing w gives optimal $u(t)$

DP has many applications beyond LQR, e.g.,

- optimal flow control in communication networks
- optimization in finance
we know $V_{N}(z)=z^{T} P_{N} z$ where $P_{N}=Q_{f}$
by DP,

$$
V_{N-1}(z)=z^{T} Q z+\min _{w}\left(w^{T} R w+(A z+B w)^{T} P_{N}(A z+B w)\right)
$$

can solve by setting derivative w.r.t. w to zero:

$$
2 w^{T} R+2(A z+B w)^{T} P_{N} B=0
$$

hence optimal w is

$$
w^{*}=-\left(R+B^{T} P_{N} B\right)^{-1} B^{T} P_{N} A z
$$

and so

$$
\begin{gathered}
V_{N-1}(z)=z^{T} Q z+w^{* T} R w^{*}+\left(A z+B w^{*}\right)^{T} P_{N}\left(A z+B w^{*}\right) \\
=z^{T}\left(Q+A^{T} P_{N} A-A^{T} P_{N} B\left(R+B^{T} P_{N} B\right)^{-1} B^{T} P_{N} A\right) z
\end{gathered}
$$

(after some ugly algebra)
we conclude that V_{N-1} is quadratic: $V_{N-1}(z)=z^{T} P_{N-1} z$ where

$$
P_{N-1}=Q+A^{T} P_{N} A-A^{T} P_{N} B\left(R+B^{T} P_{N} B\right)^{-1} B^{T} P_{N} A
$$

this recursion works for all t :
once we know $V_{t}(z)=z^{T} P_{t} z$ is quadratic, we find that V_{t-1} is as well, i.e., $V_{t-1}(z)=z^{T} P_{t-1} z$, with

$$
P_{t-1}=Q+A^{T} P_{t} A-A^{T} P_{t} B\left(R+B^{T} P_{t} B\right)^{-1} B^{T} P_{t} A
$$

together with $P_{N}=Q_{f}$, we can find P_{0}, \ldots, P_{N} by recursion (backwards in time)
called Riccati recursion for P_{t}
and the optimizing w is

$$
w^{*}=-\left(R+B^{T} P_{t} B\right)^{-1} B^{T} P_{t} A z
$$

Summary of LQR solution via DP

1. set $P_{N}:=Q_{f}$
2. for $t=N, \ldots, 1$,

$$
P_{t-1}:=Q+A^{T} P_{t} A-A^{T} P_{t} B\left(R+B^{T} P_{t} B\right)^{-1} B^{T} P_{t} A
$$

3. define $K_{t}:=-\left(R+B^{T} P_{t+1} B\right)^{-1} B^{T} P_{t+1} A$
4. optimal u is given by $u_{\mathrm{lqr}}(t)=K_{t} x(t)$ comments:

- optimal u is a linear function of the state (called linear state feedback)
- recursion for min cost-to-go runs backwards in time
- solves least-squares problem with $(N+1) m$ variables much faster than direct least-squares method

LQR example

2-state, single-input, single-output system

$$
x(t+1)=\left[\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right] x(t)+\left[\begin{array}{l}
0 \\
1
\end{array}\right] u(t), \quad y(t)=\left[\begin{array}{ll}
1 & 0
\end{array}\right] x(t)
$$

with initial state $x(0)=(1,0)$, horizon $N=20$, and weight matrices

$$
Q=Q_{f}=C^{T} C, \quad R=\rho I
$$

optimal trade-off curve of $J_{\text {in }}$ vs. $J_{\text {out }}$:

circles show LQR solutions with $\rho=0.3, \rho=10$
$u \& y$ for $\rho=0.3, \rho=10$:

optimal input has form $u(t)=K(t) x(t)$, where $K(t) \in \mathbf{R}^{1 \times 2}$ state feedback gains vs. t for various values of Q_{f} (note convergence):

Steady-state regulator

usually P_{t} rapidly converges as t decreases below N
limit or steady-state value P_{ss} satisfies

$$
P_{\mathrm{ss}}=Q+A^{T} P_{\mathrm{ss}} A-A^{T} P_{\mathrm{ss}} B\left(R+B^{T} P_{\mathrm{ss}} B\right)^{-1} B^{T} P_{\mathrm{ss}} A
$$

which is called the (DT) algebraic Riccati equation (ARE)

- P_{ss} can be found by iterating the Riccati recursion, or by direct methods
- for t not close to horizon N, LQR optimal input is approximately a linear, constant state feedback

$$
u(t)=K_{\mathrm{ss}} x(t), \quad K_{\mathrm{ss}}=-\left(R+B^{T} P_{\mathrm{ss}} B\right)^{-1} B^{T} P_{\mathrm{ss}} A
$$

(very widely used in practice; more on this later)

Time-varying systems

LQR is readily extended to handle time-varying systems

$$
x(t+1)=A(t) x(t)+B(t) u(t)
$$

and time-varying cost matrices

$$
J=\sum_{\tau=0}^{N-1}\left(x(\tau)^{T} Q(\tau) x(\tau)+u(\tau)^{T} R(\tau) u(\tau)\right)+x(N)^{T} Q_{f} x(N)
$$

(so Q_{f} is really just $Q(N)$)

DP solution is readily extended, but (of course) there need not be a steady-state solution

Tracking problems

we consider LQR cost with state and input offsets:

$$
\begin{aligned}
J & =\sum_{\tau=0}^{N-1}(x(\tau)-\bar{x}(\tau))^{T} Q(x(\tau)-\bar{x}(\tau)) \\
& +\sum_{\tau=0}^{N-1}(u(\tau)-\bar{u}(\tau))^{T} R(u(\tau)-\bar{u}(\tau))
\end{aligned}
$$

(we drop the final state term for simplicity)
here, $\bar{x}(\tau)$ and $\bar{u}(\tau)$ are given desired state and input trajectories

DP solution is readily extended, even to time-varying tracking problems

Gauss-Newton LQR

nonlinear dynamical system: $x(t+1)=f(x(t), u(t)), x(0)=x_{0}$ objective is

$$
J(U)=\sum_{\tau=0}^{N-1}\left(x(\tau)^{T} Q x(\tau)+u(\tau)^{T} R u(\tau)\right)+x(N)^{T} Q_{f} x(N)
$$

where $Q=Q^{T} \geq 0, Q_{f}=Q_{f}^{T} \geq 0, R=R^{T}>0$
start with a guess for U, and alternate between:

- linearize around current trajectory
- solve associated LQR (tracking) problem sometimes converges, sometimes to the globally optimal U
some more detail:
- let u denote current iterate or guess
- simulate system to find x, using $x(t+1)=f(x(t), u(t))$
- linearize around this trajectory: $\delta x(t+1)=A(t) \delta x(t)+B(t) \delta u(t)$

$$
A(t)=D_{x} f(x(t), u(t)) \quad B(t)=D_{u} f(x(t), u(t))
$$

- solve time-varying LQR tracking problem with cost

$$
\begin{aligned}
J & =\sum_{\tau=0}^{N-1}(x(\tau)+\delta x(\tau))^{T} Q(x(\tau)+\delta x(\tau)) \\
& +\sum_{\tau=0}^{N-1}(u(\tau)+\delta u(\tau))^{T} R(u(\tau)+\delta u(\tau))
\end{aligned}
$$

- for next iteration, set $u(t):=u(t)+\delta u(t)$

