Lecture 9 Autonomous linear dynamical systems

- autonomous linear dynamical systems
- examples
- higher order systems
- linearization near equilibrium point
- linearization along trajectory

Autonomous linear dynamical systems

continuous-time autonomous LDS has form

$$
\dot{x}=A x
$$

- $x(t) \in \mathbf{R}^{n}$ is called the state
- n is the state dimension or (informally) the number of states
- A is the dynamics matrix
(system is time-invariant if A doesn't depend on t)
picture (phase plane):

example 1: $\dot{x}=\left[\begin{array}{cc}-1 & 0 \\ 2 & 1\end{array}\right] x$

example 2: $\dot{x}=\left[\begin{array}{cc}-0.5 & 1 \\ -1 & 0.5\end{array}\right] x$

Block diagram

block diagram representation of $\dot{x}=A x$:

- $1 / s$ block represents n parallel scalar integrators
- coupling comes from dynamics matrix A
useful when A has structure, e.g., block upper triangular:

$$
\dot{x}=\left[\begin{array}{cc}
A_{11} & A_{12} \\
0 & A_{22}
\end{array}\right] x
$$

here x_{1} doesn't affect x_{2} at all

Linear circuit

circuit equations are

$$
\begin{aligned}
& C \frac{d v_{c}}{d t}=i_{c}, \quad L \frac{d i_{l}}{d t}=v_{l}, \quad\left[\begin{array}{c}
i_{c} \\
v_{l}
\end{array}\right]=F\left[\begin{array}{c}
v_{c} \\
i_{l}
\end{array}\right] \\
& C=\operatorname{diag}\left(C_{1}, \ldots, C_{p}\right), \quad L=\operatorname{diag}\left(L_{1}, \ldots, L_{r}\right)
\end{aligned}
$$

with state $x=\left[\begin{array}{c}v_{c} \\ i_{l}\end{array}\right]$, we have

$$
\dot{x}=\left[\begin{array}{cc}
C^{-1} & 0 \\
0 & L^{-1}
\end{array}\right] F x
$$

Chemical reactions

- reaction involving n chemicals; x_{i} is concentration of chemical i
- linear model of reaction kinetics

$$
\frac{d x_{i}}{d t}=a_{i 1} x_{1}+\cdots+a_{i n} x_{n}
$$

- good model for some reactions; A is usually sparse

Example: series reaction $A \xrightarrow{k_{1}} B \xrightarrow{k_{2}} C$ with linear dynamics

$$
\dot{x}=\left[\begin{array}{ccc}
-k_{1} & 0 & 0 \\
k_{1} & -k_{2} & 0 \\
0 & k_{2} & 0
\end{array}\right] x
$$

plot for $k_{1}=k_{2}=1$, initial $x(0)=(1,0,0)$

Finite-state discrete-time Markov chain

$z(t) \in\{1, \ldots, n\}$ is a random sequence with

$$
\operatorname{Prob}(z(t+1)=i \mid z(t)=j)=P_{i j}
$$

where $P \in \mathbf{R}^{n \times n}$ is the matrix of transition probabilities can represent probability distribution of $z(t)$ as n-vector

$$
p(t)=\left[\begin{array}{c}
\operatorname{Prob}(z(t)=1) \\
\vdots \\
\operatorname{Prob}(z(t)=n)
\end{array}\right]
$$

(so, e.g., $\operatorname{Prob}(z(t)=1,2$, or 3$\left.)=\left[\begin{array}{lllll}1 & 1 & 1 & 0 & \cdots\end{array}\right] p(t)\right)$ then we have $p(t+1)=P p(t)$
P is often sparse; Markov chain is depicted graphically

- nodes are states
- edges show transition probabilities

example:

- state 1 is 'system OK'
- state 2 is 'system down'
- state 3 is 'system being repaired'

$$
p(t+1)=\left[\begin{array}{ccc}
0.9 & 0.7 & 1.0 \\
0.1 & 0.1 & 0 \\
0 & 0.2 & 0
\end{array}\right] p(t)
$$

Numerical integration of continuous system

compute approximate solution of $\dot{x}=A x, x(0)=x_{0}$
suppose h is small time step (x doesn't change much in h seconds)
simple ('forward Euler') approximation:

$$
x(t+h) \approx x(t)+h \dot{x}(t)=(I+h A) x(t)
$$

by carrying out this recursion (discrete-time LDS), starting at $x(0)=x_{0}$, we get approximation

$$
x(k h) \approx(I+h A)^{k} x(0)
$$

(forward Euler is never used in practice)

Higher order linear dynamical systems

$$
x^{(k)}=A_{k-1} x^{(k-1)}+\cdots+A_{1} x^{(1)}+A_{0} x, \quad x(t) \in \mathbf{R}^{n}
$$

where $x^{(m)}$ denotes m th derivative
define new variable $z=\left[\begin{array}{c}x \\ x^{(1)} \\ \vdots \\ x^{(k-1)}\end{array}\right] \in \mathbf{R}^{n k}$, so

$$
\dot{z}=\left[\begin{array}{c}
x^{(1)} \\
\vdots \\
x^{(k)}
\end{array}\right]=\left[\begin{array}{ccccc}
0 & I & 0 & \cdots & 0 \\
0 & 0 & I & \cdots & 0 \\
\vdots & & & & \vdots \\
0 & 0 & 0 & \cdots & I \\
A_{0} & A_{1} & A_{2} & \cdots & A_{k-1}
\end{array}\right] z
$$

a (first order) LDS (with bigger state)
block diagram:

Mechanical systems

mechanical system with k degrees of freedom undergoing small motions:

$$
M \ddot{q}+D \dot{q}+K q=0
$$

- $q(t) \in \mathbf{R}^{k}$ is the vector of generalized displacements
- M is the mass matrix
- K is the stiffness matrix
- D is the damping matrix
with state $x=\left[\begin{array}{c}q \\ \dot{q}\end{array}\right]$ we have

$$
\dot{x}=\left[\begin{array}{c}
\dot{q} \\
\ddot{q}
\end{array}\right]=\left[\begin{array}{cc}
0 & I \\
-M^{-1} K & -M^{-1} D
\end{array}\right] x
$$

Linearization near equilibrium point

nonlinear, time-invariant differential equation (DE):

$$
\dot{x}=f(x)
$$

where $f: \mathbf{R}^{n} \rightarrow \mathbf{R}^{n}$
suppose x_{e} is an equilibrium point, i.e., $f\left(x_{e}\right)=0$
(so $x(t)=x_{e}$ satisfies DE)
now suppose $x(t)$ is near x_{e}, so

$$
\dot{x}(t)=f(x(t)) \approx f\left(x_{e}\right)+D f\left(x_{e}\right)\left(x(t)-x_{e}\right)
$$

with $\delta x(t)=x(t)-x_{e}$, rewrite as

$$
\dot{\delta x}(t) \approx D f\left(x_{e}\right) \delta x(t)
$$

replacing \approx with $=$ yields linearized approximation of DE near x_{e}
we hope solution of $\dot{\delta x}=D f\left(x_{e}\right) \delta x$ is a good approximation of $x-x_{e}$ (more later)
example: pendulum

2nd order nonlinear DE $m l^{2} \ddot{\theta}=-l m g \sin \theta$
rewrite as first order DE with state $x=\left[\begin{array}{c}\theta \\ \dot{\theta}\end{array}\right]$:

$$
\dot{x}=\left[\begin{array}{c}
x_{2} \\
-(g / l) \sin x_{1}
\end{array}\right]
$$

equilibrium point (pendulum down): $x=0$
linearized system near $x_{e}=0$:

$$
\dot{\delta x}=\left[\begin{array}{cc}
0 & 1 \\
-g / l & 0
\end{array}\right] \delta x
$$

Does linearization 'work'?

the linearized system usually, but not always, gives a good idea of the system behavior near x_{e}
example 1: $\dot{x}=-x^{3}$ near $x_{e}=0$
for $x(0)>0$ solutions have form $x(t)=\left(x(0)^{-2}+2 t\right)^{-1 / 2}$
linearized system is $\dot{\delta x}=0$; solutions are constant
example 2: $\dot{z}=z^{3}$ near $z_{e}=0$
for $z(0)>0$ solutions have form $z(t)=\left(z(0)^{-2}-2 t\right)^{-1 / 2}$
(finite escape time at $t=z(0)^{-2} / 2$)
linearized system is $\dot{\delta z}=0$; solutions are constant

- systems with very different behavior have same linearized system
- linearized systems do not predict qualitative behavior of either system

Linearization along trajectory

- suppose $x_{\text {traj }}: \mathbf{R}_{+} \rightarrow \mathbf{R}^{n}$ satisfies $\dot{x}_{\text {traj }}(t)=f\left(x_{\text {traj }}(t), t\right)$
- suppose $x(t)$ is another trajectory, i.e., $\dot{x}(t)=f(x(t), t)$, and is near $x_{\text {traj }}(t)$
- then

$$
\frac{d}{d t}\left(x-x_{\text {traj }}\right)=f(x, t)-f\left(x_{\text {traj }}, t\right) \approx D_{x} f\left(x_{\text {traj }}, t\right)\left(x-x_{\text {traj }}\right)
$$

- (time-varying) LDS

$$
\dot{\delta x}=D_{x} f\left(x_{\text {traj }}, t\right) \delta x
$$

is called linearized or variational system along trajectory $x_{\text {traj }}$
example: linearized oscillator suppose $x_{\operatorname{traj}}(t)$ is T-periodic solution of nonlinear DE:

$$
\dot{x}_{\text {traj }}(t)=f\left(x_{\text {traj }}(t)\right), \quad x_{\text {traj }}(t+T)=x_{\text {traj }}(t)
$$

linearized system is

$$
\dot{\delta x}=A(t) \delta x
$$

where $A(t)=D f\left(x_{\text {traj }}(t)\right)$
$A(t)$ is T-periodic, so linearized system is called T-periodic linear system. used to study:

- startup dynamics of clock and oscillator circuits
- effects of power supply and other disturbances on clock behavior

