Lecture 4
 Natural response of first and second order systems

- first order systems
- second order systems
- real distinct roots
- real equal roots
- complex roots
- harmonic oscillator
- stability
- decay rate
- critical damping
- parallel \& series RLC circuits

First order systems

$$
a y^{\prime}+b y=0 \quad(\text { with } a \neq 0)
$$

righthand side is zero:

- called autonomous system
- solution is called natural or unforced response
can be expressed as

$$
T y^{\prime}+y=0 \quad \text { or } \quad y^{\prime}+r y=0
$$

where

- $T=a / b$ is a time (units: seconds)
- $r=b / a=1 / T$ is a rate (units: $1 / \mathrm{sec}$)

Solution by Laplace transform

take Laplace transform of $T y^{\prime}+y=0$ to get

$$
T(\underbrace{s Y(s)-y(0)}_{\mathcal{L}\left(y^{\prime}\right)})+Y(s)=0
$$

solve for $Y(s)$ (algebra!)

$$
Y(s)=\frac{T y(0)}{s T+1}=\frac{y(0)}{s+1 / T}
$$

and so $y(t)=y(0) e^{-t / T}$
solution of $T y^{\prime}+y=0: y(t)=y(0) e^{-t / T}$
if $T>0, y$ decays exponentially

- T gives time to decay by $e^{-1} \approx 0.37$
- $0.693 T$ gives time to decay by half $(0.693=\log 2)$
- $4.6 T$ gives time to decay by $0.01(4.6=\log 100)$
if $T<0, y$ grows exponentially
- $|T|$ gives time to grow by $e \approx 2.72$;
- $0.693|T|$ gives time to double
- $4.6|T|$ gives time to grow by 100

Examples

simple RC circuit:

circuit equation: $R C v^{\prime}+v=0$
solution: $v(t)=v(0) e^{-t /(R C)}$
population dynamics:

- $y(t)$ is population of some bacteria at time t
- growth (or decay if negative) rate is $y^{\prime}=b y-d y$ where b is birth rate, d is death rate
- $y(t)=y(0) e^{(b-d) t}$ (grows if $b>d$; decays if $b<d$)

thermal system:

- $y(t)$ is temperature of a body (above ambient) at t
- heat loss proportional to temp (above ambient): ay
- heat in body is $c y$, where c is thermal capacity, so $c y^{\prime}=-a y$
- $y(t)=y(0) e^{-a t / c} ; c / a$ is thermal time constant

Second order systems

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

assume $a>0$ (otherwise multiply equation by -1)
solution by Laplace transform:

$$
a(\underbrace{s^{2} Y(s)-s y(0)-y^{\prime}(0)}_{\mathcal{L}\left(y^{\prime \prime}\right)})+b(\underbrace{s Y(s)-y(0)}_{\mathcal{L}\left(y^{\prime}\right)})+c Y(s)=0
$$

solve for Y (just algebra!)

$$
Y(s)=\frac{a s y(0)+a y^{\prime}(0)+b y(0)}{a s^{2}+b s+c}=\frac{\alpha s+\beta}{a s^{2}+b s+c}
$$

where $\alpha=a y(0)$ and $\beta=a y^{\prime}(0)+b y(0)$
so solution of $a y^{\prime \prime}+b y^{\prime}+c y=0$ is

$$
y(t)=\mathcal{L}^{-1}\left(\frac{\alpha s+\beta}{a s^{2}+b s+c}\right)
$$

- $\chi(s)=a s^{2}+b s+c$ is called characteristic polynomial of the system
- form of $y=\mathcal{L}^{-1}(Y)$ depends on roots of characteristic polynomial χ
- coefficients of numerator $\alpha s+\beta$ come from initial conditions

Roots of χ

(two) roots of characteristic polynomial χ are

$$
\lambda_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

i.e., we have $a s^{2}+b s+c=a\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right)$
three cases:

- roots are real and distinct: $b^{2}>4 a c$

$$
\lambda_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}, \quad \lambda_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}
$$

- roots are real and equal: $b^{2}=4 a c$

$$
\lambda_{1}=\lambda_{2}=-b /(2 a)
$$

- roots are complex (and conjugates): $b^{2}<4 a c$

$$
\lambda_{1}=\sigma+j \omega, \quad \lambda_{2}=\sigma-j \omega
$$

where $\sigma=-b /(2 a)$ and

$$
\omega=\frac{\sqrt{4 a c-b^{2}}}{2 a}=\sqrt{(c / a)-(b / 2 a)^{2}}
$$

Real distinct roots $\left(b^{2}>4 a c\right)$

$$
\chi(s)=a\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right) \quad\left(\lambda_{1}, \lambda_{2} \text { real }\right)
$$

from page 4-6,

$$
Y(s)=\frac{\alpha s+\beta}{a\left(s-\lambda_{1}\right)\left(s-\lambda_{2}\right)}
$$

where α, β depend on initial conditions
express Y as

$$
Y(s)=\frac{r_{1}}{s-\lambda_{1}}+\frac{r_{2}}{s-\lambda_{2}}
$$

where r_{1} and r_{2} are found from

$$
r_{1}+r_{2}=\alpha / a, \quad-\lambda_{2} r_{1}-\lambda_{1} r_{2}=\beta / a
$$

which yields

$$
r_{1}=\frac{\lambda_{1} \alpha+\beta}{\sqrt{b^{2}-4 a c}}, \quad r_{2}=\frac{-\lambda_{2} \alpha-\beta}{\sqrt{b^{2}-4 a c}}
$$

now we can find the inverse Laplace tranform . . .

$$
y(t)=r_{1} e^{\lambda_{1} t}+r_{2} e^{\lambda_{2} t}
$$

a sum of two (real) exponentials

- coefficients of exponentials, i.e., λ_{1}, λ_{2}, depend only on a, b, c
- associated time constants $T_{1}=1 /\left|\lambda_{1}\right|, T_{2}=1 /\left|\lambda_{2}\right|$
- r_{1}, r_{2} depend (linearly) on the initial conditions $y(0), y^{\prime}(0)$
- signs of λ_{1}, λ_{2} determine whether solution grows or decays as $t \rightarrow \infty$
- magnitudes of λ_{1}, λ_{2} determine growth rate (if positive) or decay rate (if negative)

Example: second-order RC circuit

at $t=0$, the voltage across each capacitor is 1 V

- for $t \geq 0, y$ satisfies LCCODE (from page 2-18)

$$
y^{\prime \prime}+3 y^{\prime}+y=0
$$

- initial conditions:

$$
y(0)=1, \quad y^{\prime}(0)=0
$$

(at $t=0$, voltage across righthand capacitor is one; current through righthand resistor is zero)

solution using Laplace transform

- characteristic polynomial: $\chi(s)=s^{2}+3 s+1$
- $b^{2}=9>4 a c=4$, so roots are real \& distinct: $\lambda_{1}=-2.62, \lambda_{2}=-0.38$
- hence, solution has form

$$
y(t)=r_{1} e^{-2.62 t}+r_{2} e^{-0.38 t}
$$

- initial conditions determine r_{1}, r_{2} :

$$
y(0)=r_{1}+r_{2}=1, \quad y^{\prime}(0)=-2.62 r_{1}-0.38 r_{2}=0
$$

yields $r_{1}=-0.17, r_{2}=1.17$,

$$
y(t)=-0.17 e^{-2.62 t}+1.17 e^{-0.38 t}
$$

- first exponential decays fast, within $2 \sec \left(T_{1}=1 /\left|\lambda_{1}\right|=0.38\right)$
- second exponential decays slower $\left(T_{2}=1 /\left|\lambda_{2}\right|=2.62\right)$

Real equal roots $\left(b^{2}=4 a c\right)$

$$
\chi(s)=a(s-\lambda)^{2} \quad \text { with } \lambda=-b /(2 a)
$$

from page 4-6,

$$
Y(s)=\frac{\alpha s+\beta}{a(s-\lambda)^{2}}
$$

express Y as

$$
Y(s)=\frac{r_{1}}{s-\lambda}+\frac{r_{2}}{(s-\lambda)^{2}}
$$

where r_{1} and r_{2} are found from $r_{1}=\alpha / a,-\lambda r_{1}+r_{2}=\beta / a$, which yields

$$
r_{1}=\alpha / a, \quad r_{2}=(\beta+\lambda \alpha) / a
$$

inverse Laplace transform is

$$
y(t)=r_{1} e^{\lambda t}+r_{2} t e^{\lambda t}
$$

Example: mass-spring-damper

mass $m=1$, stiffness $k=1$, damping $b=2$

- LCCODE (from page 2-19):

$$
y^{\prime \prime}+2 y^{\prime}+y=0
$$

- initial conditions

$$
y(0)=0, \quad y^{\prime}(0)=1
$$

solution using Laplace transform

- characteristic polynomial: $s^{2}+2 s+1=(s+1)^{2}$
- solution has form $y(t)=r_{1} e^{-t}+r_{2} t e^{-t}$
- initial conditions determine $r_{1}, r_{2}: y(0)=r_{1}=0, y^{\prime}(0)=-r_{1}+r_{2}=1$ yields $r_{1}=0, r_{2}=1$, i.e.,

$$
y(t)=t e^{-t}
$$

called critically damped system (more later)

Complex roots $\left(b^{2}<4 a c\right)$

$$
\chi(s)=a(s-\lambda)(s-\bar{\lambda}) \text { with } \lambda=\sigma+j \omega, \bar{\lambda}=\sigma-j \omega
$$

from page 4-6,

$$
Y(s)=\frac{\alpha s+\beta}{a(s-\lambda)(s-\bar{\lambda})}
$$

express Y as

$$
Y(s)=\frac{r_{1}}{s-\lambda}+\frac{r_{2}}{s-\bar{\lambda}}
$$

where r_{1} and r_{2} follow from $r_{1}+r_{2}=\alpha / a,-r_{1} \bar{\lambda}-r_{2} \lambda=\beta / a$:

$$
r_{1}=\frac{\alpha}{2 a}+j \frac{\alpha b-2 a \beta}{4 a^{2} \omega}, \quad r_{2}=\bar{r}_{1}
$$

inverse Laplace transform is

$$
y(t)=r_{1} e^{\lambda t}+\bar{r}_{1} e^{\bar{\lambda} t}
$$

other useful forms:

$$
\begin{aligned}
y(t)= & r_{1} e^{\lambda t}+\bar{r}_{1} e^{\bar{\lambda} t} \\
= & r_{1} e^{\sigma t}(\cos \omega t+j \sin \omega t)+\bar{r}_{1} e^{\sigma t}(\cos \omega t-j \sin \omega t) \\
= & \left(\Re\left(r_{1}\right)+j \Im\left(r_{1}\right)\right) e^{\sigma t}(\cos \omega t+j \sin \omega t) \\
& +\left(\Re\left(r_{1}\right)-j \Im\left(r_{1}\right)\right) e^{\sigma t}(\cos \omega t-j \sin \omega t) \\
= & 2 e^{\sigma t}\left(\Re\left(r_{1}\right) \cos \omega t-\Im\left(r_{1}\right) \sin \omega t\right) \\
= & A e^{\sigma t} \cos (\omega t+\phi)
\end{aligned}
$$

where $A=2\left|r_{1}\right|, \phi=\arctan \left(\Im\left(r_{1}\right) / \Re\left(r_{1}\right)\right)$

- if $\sigma>0, y$ is an exponentially growing sinusoid; if $\sigma<0, y$ is an exponentially decaying sinusoid; if $\sigma=0, y$ is a sinusoid
- $\Re \lambda=\sigma$ gives exponential rate of decay or growth; $\Im \lambda=\omega$ gives oscillation frequency
- amplitude A and phase ϕ determined by initial conditions
- $A e^{\sigma t}$ is called the envelope of y

example

what are σ and ω here?

- oscillation period is $2 \pi / \omega$
- envelope decays exponentially with time constant $-1 / \sigma$
- envelope gives $|y|$ when sinusoid term is ± 1
- if $\sigma<0$, envelope decays by $1 / e$ in $-1 / \sigma$ seconds
- if $\sigma>0$, envelope doubles every $0.693 / \sigma$ seconds
- growth/decay per period is $e^{2 \pi(\sigma / \omega)}$
- if $\sigma<0$, number of cycles to decay to 1% is

$$
(4.6 / 2 \pi)(\omega /|\sigma|)=0.73(\omega /|\sigma|)
$$

The harmonic oscillator

system described by LCCODE

$$
y^{\prime \prime}+\omega^{2} y=0
$$

- characteristic polynomial is $s^{2}+\omega^{2}$; roots are $\pm j \omega$
- solutions are sinusoidal: $y(t)=A \cos (\omega t+\phi)$, where A and ϕ come from initial conditions

LC circuit

- from $i=C v^{\prime}, v=-L i^{\prime}$ we get

$$
v^{\prime \prime}+(1 / L C) v=0
$$

- oscillation frequency is $\omega=1 / \sqrt{L C}$

mass-spring system

- $m y^{\prime \prime}+k y=0$;
- oscillation frequency is $\omega=\sqrt{k / m}$

Stability of second order system

second order system

$$
a y^{\prime \prime}+b y^{\prime}+c y=0
$$

(recall assumption $a>0$)
we say the system is stable if $y(t) \rightarrow 0$ as $t \rightarrow \infty$ no matter what the initial conditions are
when is a 2 nd order system stable?

- for real distinct roots, solutions have the form $y(t)=r_{1} e^{\lambda_{1} t}+r_{2} e^{\lambda_{2} t}$ for stability, we need

$$
\lambda_{1}=\frac{-b+\sqrt{b^{2}-4 a c}}{2 a}<0, \quad \lambda_{2}=\frac{-b-\sqrt{b^{2}-4 a c}}{2 a}<0,
$$

we must have $b>0$ and $4 a c>0$, i.e., $c>0$

- for real equal roots, solutions have the form $y(t)=r_{1} e^{\lambda t}+r_{2} t e^{\lambda t}$ for stability, we need

$$
\lambda=-b / 2 a<0
$$

i.e., $b>0$; since $b^{2}=4 a c$, we also have $c>0$

- for complex roots, solutions have the form $y(t)=A e^{\sigma t} \cos (\omega t+\phi)$ for stability, we need

$$
\sigma=\Re \lambda=-b / 2 a<0
$$

i.e., $b>0$; since $b^{2}<4 a c$ we also have $c>0$
summary: second order system with $a>0$ is stable when

$$
b>0 \text { and } c>0
$$

Decay rate

assume system $a y^{\prime \prime}+b y^{\prime}+c y=0$ is stable ($a, b, c>0$); how fast do the solutions decay?

- real distinct roots $\left(b^{2}>4 a c\right)$
since $\lambda_{1}>\lambda_{2}$, for t large,

$$
\left|r_{1} e^{\lambda_{1} t}\right| \gg\left|r_{2} e^{\lambda_{2} t}\right|
$$

(assuming r_{1} is nonzero); hence asymptotic decay rate is given by

$$
-\lambda_{1}=\frac{b-\sqrt{b^{2}-4 a c}}{2 a}
$$

- real equal roots $\left(b^{2}=4 a c\right)$
solution is $r_{1} e^{\lambda t}+r_{2} t e^{\lambda t}$ which decays like $e^{\lambda t}$, so decay rate is

$$
-\lambda=b /(2 a)=\sqrt{c / a}
$$

- complex roots ($b^{2}<4 a c$)
solution is $A e^{\sigma t} \cos (\omega t+\phi)$, so decay rate is

$$
-\sigma=-\Re(\lambda)=b /(2 a)
$$

Critical damping

question: given $a>0$ and $c>0$, what value of $b>0$ gives maximum decay rate?
answer:

$$
b=2 \sqrt{a c}
$$

which corresponds to equal roots, and decay rate $\sqrt{c / a}$

- $b=2 \sqrt{a c}$ is called critically damped (real, equal roots)
- $b>2 \sqrt{a c}$ is called overdamped (real, distinct roots)
- $b<2 \sqrt{a c}$ is called underdamped (complex roots)

justification:

- if the system is underdamped, the decay rate is worse than $\sqrt{c / a}$ because

$$
b /(2 a)<\sqrt{c / a}
$$

if $b<2 \sqrt{a c}$

- if the system is overdamped, the decay rate is worse than $\sqrt{c / a}$ because

$$
\frac{b-\sqrt{b^{2}-4 a c}}{2 a}<\sqrt{c / a}
$$

to prove this, multiply by $2 a$ and re-arrange to get

$$
b-2 \sqrt{a c} \stackrel{?}{<} \sqrt{b^{2}-4 a c}
$$

rewrite as

$$
b-2 \sqrt{a c} \stackrel{?}{<} \sqrt{(b-2 \sqrt{a c})(b+2 \sqrt{a c})}
$$

divide by $b-2 \sqrt{a c}$ to get

$$
1 \stackrel{?}{<} \frac{\sqrt{b+2 \sqrt{a c}}}{\sqrt{b-\sqrt{a c}}}
$$

which is true ...

Parallel RLC circuit

we have $v=-L i^{\prime}$ and $C v^{\prime}=i-v / R$, so

$$
v^{\prime \prime}+\frac{1}{R C} v^{\prime}+\frac{1}{L C} v=0
$$

- stable (assuming $L, R, C>0$)
- overdamped if $R<\sqrt{L /(4 C)}$
- critically damped if $R=\sqrt{L /(4 C)}$
- underdamped if $R>\sqrt{L / 4 C}$; oscillation frequency is

$$
\omega=\sqrt{1 / L C-(1 / 2 R C)^{2}}
$$

Series RLC circuit

by KVL, $R i+L i^{\prime}+v=0$; also, $i=C v^{\prime}$, so

$$
v^{\prime \prime}+\frac{R}{L} v^{\prime}+\frac{1}{L C} v=0
$$

- stable (assuming $L, R, C>0$)
- overdamped if $R>2 \sqrt{L / C}$
- critically damped if $R=2 \sqrt{L / C}$
- underdamped if $R<2 \sqrt{L / C}$; oscillation frequency is

$$
\omega=\sqrt{1 / L C-(R / 2 L)^{2}}
$$

