
S. Boyd EE102

Lecture 4

Natural response of first and second order
systems

• first order systems
• second order systems
– real distinct roots
– real equal roots
– complex roots
– harmonic oscillator
– stability
– decay rate
– critical damping
– parallel & series RLC circuits
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First order systems

ay′ + by = 0 (with a 6= 0)

righthand side is zero:

• called autonomous system

• solution is called natural or unforced response

can be expressed as

Ty′ + y = 0 or y′ + ry = 0

where

• T = a/b is a time (units: seconds)

• r = b/a = 1/T is a rate (units: 1/sec)
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Solution by Laplace transform

take Laplace transform of Ty′ + y = 0 to get

T (sY (s)− y(0)
︸ ︷︷ ︸

L(y′)

) + Y (s) = 0

solve for Y (s) (algebra!)

Y (s) =
Ty(0)

sT + 1
=

y(0)

s+ 1/T

and so y(t) = y(0)e−t/T
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solution of Ty′ + y = 0: y(t) = y(0)e−t/T

if T > 0, y decays exponentially

• T gives time to decay by e−1 ≈ 0.37

• 0.693T gives time to decay by half (0.693 = log 2)

• 4.6T gives time to decay by 0.01 (4.6 = log 100)

if T < 0, y grows exponentially

• |T | gives time to grow by e ≈ 2.72;

• 0.693|T | gives time to double
• 4.6|T | gives time to grow by 100
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Examples

simple RC circuit:

PSfrag replacements

vR C

circuit equation: RCv′+v = 0

solution: v(t) = v(0)e−t/(RC)

population dynamics:

• y(t) is population of some bacteria at time t
• growth (or decay if negative) rate is y′ = by − dy where b is birth rate,
d is death rate

• y(t) = y(0)e(b−d)t (grows if b > d; decays if b < d)
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thermal system:

• y(t) is temperature of a body (above ambient) at t
• heat loss proportional to temp (above ambient): ay
• heat in body is cy, where c is thermal capacity, so cy′ = −ay
• y(t) = y(0)e−at/c; c/a is thermal time constant
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Second order systems

ay′′ + by′ + cy = 0

assume a > 0 (otherwise multiply equation by −1)

solution by Laplace transform:

a(s2Y (s)− sy(0)− y′(0)
︸ ︷︷ ︸

L(y′′)

) + b(sY (s)− y(0)
︸ ︷︷ ︸

L(y′)

) + cY (s) = 0

solve for Y (just algebra!)

Y (s) =
asy(0) + ay′(0) + by(0)

as2 + bs+ c
=

αs+ β

as2 + bs+ c

where α = ay(0) and β = ay′(0) + by(0)
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so solution of ay′′ + by′ + cy = 0 is

y(t) = L−1

(
αs+ β

as2 + bs+ c

)

• χ(s) = as2 + bs+ c is called characteristic polynomial of the system

• form of y = L−1(Y ) depends on roots of characteristic polynomial χ

• coefficients of numerator αs+ β come from initial conditions
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Roots of χ

(two) roots of characteristic polynomial χ are

λ1,2 =
−b±

√
b2 − 4ac

2a

i.e., we have as2 + bs+ c = a(s− λ1)(s− λ2)

three cases:

• roots are real and distinct: b2 > 4ac

λ1 =
−b+

√
b2 − 4ac

2a
, λ2 =

−b−
√
b2 − 4ac

2a

• roots are real and equal: b2 = 4ac

λ1 = λ2 = −b/(2a)
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• roots are complex (and conjugates): b2 < 4ac

λ1 = σ + jω, λ2 = σ − jω,

where σ = −b/(2a) and

ω =

√
4ac− b2

2a
=
√

(c/a)− (b/2a)2
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Real distinct roots (b2 > 4ac)

χ(s) = a(s− λ1)(s− λ2) (λ1, λ2 real)

from page 4-6,

Y (s) =
αs+ β

a(s− λ1)(s− λ2)

where α, β depend on initial conditions

express Y as

Y (s) =
r1

s− λ1
+

r2
s− λ2

where r1 and r2 are found from

r1 + r2 = α/a, −λ2r1 − λ1r2 = β/a

which yields

r1 =
λ1α+ β√
b2 − 4ac

, r2 =
−λ2α− β√
b2 − 4ac
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now we can find the inverse Laplace tranform . . .

y(t) = r1e
λ1t + r2e

λ2t

a sum of two (real) exponentials

• coefficients of exponentials, i.e., λ1, λ2, depend only on a, b, c

• associated time constants T1 = 1/|λ1|, T2 = 1/|λ2|
• r1, r2 depend (linearly) on the initial conditions y(0), y′(0)

• signs of λ1, λ2 determine whether solution grows or decays as t→∞
• magnitudes of λ1, λ2 determine growth rate (if positive) or decay rate
(if negative)
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Example: second-order RC circuitPSfrag replacements

t = 0
y

1Ω 1Ω

1F 1F

at t = 0, the voltage across each capacitor is 1V

• for t ≥ 0, y satisfies LCCODE (from page 2-18)

y′′ + 3y′ + y = 0

• initial conditions:
y(0) = 1, y′(0) = 0

(at t = 0, voltage across righthand capacitor is one; current through
righthand resistor is zero)
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solution using Laplace transform

• characteristic polynomial: χ(s) = s2 + 3s+ 1

• b2 = 9 > 4ac = 4, so roots are real & distinct: λ1 = −2.62, λ2 = −0.38

• hence, solution has form

y(t) = r1e
−2.62 t + r2e

−0.38 t

• initial conditions determine r1, r2:

y(0) = r1 + r2 = 1, y′(0) = −2.62r1 − 0.38r2 = 0

yields r1 = −0.17, r2 = 1.17,

y(t) = −0.17e−2.62 t + 1.17e−0.38 t
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• first exponential decays fast, within 2sec (T1 = 1/|λ1| = 0.38)

• second exponential decays slower (T2 = 1/|λ2| = 2.62)

expanded scale, for 0 ≤ t ≤ 2
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Real equal roots (b2 = 4ac)

χ(s) = a(s− λ)2 with λ = −b/(2a)

from page 4-6,
Y (s) =

αs+ β

a(s− λ)2

express Y as

Y (s) =
r1

s− λ +
r2

(s− λ)2

where r1 and r2 are found from r1 = α/a, −λr1 + r2 = β/a, which yields

r1 = α/a, r2 = (β + λα)/a

inverse Laplace transform is

y(t) = r1e
λt + r2te

λt
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Example: mass-spring-damper

PSfrag replacements

y

m

k b

mass m = 1, stiffness k = 1, damping b = 2

• LCCODE (from page 2-19):

y′′ + 2y′ + y = 0

• initial conditions
y(0) = 0, y′(0) = 1
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solution using Laplace transform

• characteristic polynomial: s2 + 2s+ 1 = (s+ 1)2

• solution has form y(t) = r1e
−t + r2te

−t

• initial conditions determine r1, r2: y(0) = r1 = 0, y′(0) = −r1 + r2 = 1
yields r1 = 0, r2 = 1, i.e.,

y(t) = te−t
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called critically damped system (more later)
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Complex roots (b2 < 4ac)

χ(s) = a(s− λ)(s− λ) with λ = σ + jω, λ = σ − jω

from page 4-6,

Y (s) =
αs+ β

a(s− λ)(s− λ)

express Y as

Y (s) =
r1

s− λ +
r2

s− λ

where r1 and r2 follow from r1 + r2 = α/a, −r1λ− r2λ = β/a:

r1 =
α

2a
+ j

αb− 2aβ

4a2ω
, r2 = r1

inverse Laplace transform is

y(t) = r1e
λt + r1e

λt
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other useful forms:

y(t) = r1e
λt + r1e

λt

= r1e
σt(cosωt+ j sinωt) + r1e

σt(cosωt− j sinωt)

= (<(r1) + j=(r1)) e
σt(cosωt+ j sinωt)

+ (<(r1)− j=(r1))e
σt (cosωt− j sinωt)

= 2eσt (<(r1) cosωt−=(r1) sinωt)

= Aeσt cos(ωt+ φ)

where A = 2|r1|, φ = arctan(=(r1)/<(r1))

• if σ > 0, y is an exponentially growing sinusoid; if σ < 0, y is an
exponentially decaying sinusoid; if σ = 0, y is a sinusoid

• <λ = σ gives exponential rate of decay or growth; =λ = ω gives
oscillation frequency

• amplitude A and phase φ determined by initial conditions
• Aeσt is called the envelope of y
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example
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what are σ and ω here?

• oscillation period is 2π/ω

• envelope decays exponentially with time constant −1/σ
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• envelope gives |y| when sinusoid term is ±1

• if σ < 0, envelope decays by 1/e in −1/σ seconds

• if σ > 0, envelope doubles every 0.693/σ seconds

• growth/decay per period is e2π(σ/ω)

• if σ < 0, number of cycles to decay to 1% is

(4.6/2π)(ω/|σ|) = 0.73(ω/|σ|)
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The harmonic oscillator

system described by LCCODE

y′′ + ω2y = 0

• characteristic polynomial is s2 + ω2; roots are ±jω
• solutions are sinusoidal: y(t) = A cos(ωt+ φ), where A and φ come
from initial conditions

LC circuit

• from i = Cv′, v = −Li′ we get

v′′ + (1/LC)v = 0

• oscillation frequency is ω = 1/
√
LC

PSfrag replacements

CL v

i
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mass-spring system

• my′′ + ky = 0;

• oscillation frequency is ω =
√

k/mPSfrag replacements

m

y

k
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Stability of second order system

second order system
ay′′ + by′ + cy = 0

(recall assumption a > 0)

we say the system is stable if y(t)→ 0 as t→∞ no matter what the
initial conditions are

when is a 2nd order system stable?

• for real distinct roots, solutions have the form y(t) = r1e
λ1t + r2e

λ2t

for stability, we need

λ1 =
−b+

√
b2 − 4ac

2a
< 0, λ2 =

−b−
√
b2 − 4ac

2a
< 0,

we must have b > 0 and 4ac > 0, i.e., c > 0
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• for real equal roots, solutions have the form y(t) = r1e
λt + r2te

λt

for stability, we need
λ = −b/2a < 0

i.e., b > 0; since b2 = 4ac, we also have c > 0

• for complex roots, solutions have the form y(t) = Aeσt cos(ωt+ φ)

for stability, we need

σ = <λ = −b/2a < 0

i.e., b > 0; since b2 < 4ac we also have c > 0

summary: second order system with a > 0 is stable when

b > 0 and c > 0
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Decay rate

assume system ay′′ + by′ + cy = 0 is stable (a, b, c > 0); how fast do the
solutions decay?

• real distinct roots (b2 > 4ac)

since λ1 > λ2, for t large,

∣
∣r1e

λ1t
∣
∣À

∣
∣r2e

λ2t
∣
∣

(assuming r1 is nonzero); hence asymptotic decay rate is given by

−λ1 =
b−
√
b2 − 4ac

2a
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• real equal roots (b2 = 4ac)

solution is r1e
λt + r2te

λt which decays like eλt, so decay rate is

−λ = b/(2a) =
√

c/a

• complex roots (b2 < 4ac)

solution is Aeσt cos(ωt+ φ), so decay rate is

−σ = −<(λ) = b/(2a)
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Critical damping

question: given a > 0 and c > 0, what value of b > 0 gives maximum
decay rate?

answer:
b = 2

√
ac

which corresponds to equal roots, and decay rate
√

c/a

• b = 2
√
ac is called critically damped (real, equal roots)

• b > 2
√
ac is called overdamped (real, distinct roots)

• b < 2
√
ac is called underdamped (complex roots)

justification:

• if the system is underdamped, the decay rate is worse than
√

c/a
because

b/(2a) <
√

c/a,

if b < 2
√
ac
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• if the system is overdamped, the decay rate is worse than
√

c/a because

b−
√
b2 − 4ac

2a
<
√

c/a

to prove this, multiply by 2a and re-arrange to get

b− 2
√
ac

?
<
√

b2 − 4ac

rewrite as

b− 2
√
ac

?
<

√

(b− 2
√
ac)(b+ 2

√
ac)

divide by b− 2
√
ac to get

1
?
<

√

b+ 2
√
ac

√

b−√ac

which is true . . .
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Parallel RLC circuit
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RL C v

i

we have v = −Li′ and Cv′ = i− v/R, so

v′′ +
1

RC
v′ +

1

LC
v = 0

• stable (assuming L,R,C > 0)

• overdamped if R <
√

L/(4C)

• critically damped if R =
√

L/(4C)

• underdamped if R >
√

L/4C; oscillation frequency is

ω =
√

1/LC − (1/2RC)2
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Series RLC circuitPSfrag replacements

R L C

v

i

by KVL, Ri+ Li′ + v = 0; also, i = Cv′, so

v′′ +
R

L
v′ +

1

LC
v = 0

• stable (assuming L,R,C > 0)

• overdamped if R > 2
√

L/C

• critically damped if R = 2
√

L/C

• underdamped if R < 2
√

L/C; oscillation frequency is

ω =
√

1/LC − (R/2L)2

Natural response of first and second order systems 4–32


