
Chapter 12

Interprocess Communication

Recall that an important function of operating systems is to provide abstractions and

services to applications. One such service is to support communication among pro-

cesses, in order to enable the construction of concurrent or distributed applications.

A special case is client-server applications, which allow client applications to interact

with server applications using well-defined interfaces.

This chapter discusses high-level issues in communication: naming, abstractions

and programming interfaces, and application structures such as client-server. The

next chapter deals with the low-level details of how bytes are actually transferred

and delivered to the right place.

To read more: Communication is covered very nicely in Stallings [6], Chapter 13, especially

Sections 13.1 and 13.2. It is also covered in Silberschatz and Galvin [4] Sections 15.5 and

15.6. Then, of course, there are whole textbooks devoted to computer communications. A

broad introductory text is Comer [1]; more advanced books are tanenbaum [9] and stallings

[5].

12.1 Naming

In order to communicate, processes need to know about each other

We get names when we are born, and exchange them when we meet other people.

What about processes?

A basic problem with inter-process communication is naming. In general, pro-

cesses do not know about each other. Indeed, one of the roles of the operating system

is to keep processes separate so that they do not interfere with each other. Thus

special mechanisms are required in order to enable processes to establish contact.

210



Inheritence can be used in lieu of naming

The simplest mechanism is through family relationships. If one process forks another,

as in the Unix system, the child process may inherit various stuff from its parent.

For example, various communication mechanisms may be established by the parent

process before the fork, and are thereafter accessible also by the child process. One

such mechanism is pipes, as described below on page 214 and in Appendix D.

Exercise 168 Can a process obtain the identity (that is, process ID) of its family mem-

bers? Does it help for communication?

Predefined names can be adopted

Another simple approach is to use predefined and agreed names for certain services.

In this case the name is known in advance, and represents a service, not a specific

process. The process that should implement this service adopts the name as part of

its initialization.

Exercise 169 What happens if no process adopts the name of a desired service?

For example, this approach is the basis for the world-wide web. The service pro-

vided by web servers is actually a service of sending the pages requested by clients

(the web browsers). This service is identified by the port number 80 — in essense,

the port number serves as a name. This means that a browser that wants a web page

from the server www.abc.com just sends a request to port 80 at that address. The

process that implements the service on that host listens for incoming requests on that

port, and serves them when they arrive. This is described in more detail below.

Names can be registered with a name server

Amore general solution is to use a name service, maintained by the operating system.

Any process can advertise itself by registering a chosen string with the name service.

Other processes can then look up this string, and obtain contact information for the

process that registered it.

Exercise 170 And how do we create the initial contact with the name service?

A sticky situation develops if more than one set of processes tries to use the same

string to identify themselves to each other. It is easy for the first process to figure

out that the desired string is already in use by someone else, and therefore another

string should be chosen in its place. Of course, it then has to tell its colleagues about

the new string, so that they know what to request from the name server. But it can’t

contact its colleagues, because the whole point of having a string was to establish the

initial contact...

211



12.2 Programming Interfaces and Abstractions

Being able to name your partner is just a pre-requisite. The main issue in communi-

cation is being able to exchange information. Processes cannot do so directly — they

need to ask the operating system to do it for them. This section describes various

interfaces that can be used for this purpose.

12.2.1 Remote Procedure Call

A natural extension to procedure calls is to call remote procedures

The most structured approach to communication is to extend the well-known pro-

cedure calling mechanism, and allow one process to call a procedure from another

process, possibly on a different machine. This is called a remote procedure call (RPC).

This idea has become even more popular with the advent of object-oriented program-

ming, and has even been incorporated in programming languages. An example is

Java’s remote method invocation (RMI). However, the idea can be implemented even

if the program is not written in a language with explicit support.

The implementation is based on stub procedures

The implementation is based on stubs — crippled procedures that represent a remote

procedure by having the same interface. The calling process is linked with a stub that

has the same interface as the called procedure. However, this stub does not implement

this procedure. Instead, it sends the arguments over to the stub linked with the other

process, and waits for a reply.

procedure f

x = g(arg)

.

.

.

.

.

.

stub for f

procedure g

receive arg

rv = g(arg)

send rv

return

stub for g

send arg

recv rv

return rv

The other stub mimics the caller, and calls the desired procedure locally with the

specified arguments. When the procedure returns, the return values are shipped

back and handed over to the calling process.

RPC is a natural extension of the procedure call interface, and has the advantage

of allowing the programmer to concentrate on the logical structure of the program,

212



while disregarding communication issues. The stub functions are typically provided

by a library, which hides the actual implementation.

For example, consider an ATM used to dispense cash at a mall. When a user

requests cash, the business logic implies calling a function that verifies that the ac-

count balance is sufficient and then updates it according to the withdrawal amount.

But such a function can only run on the bank’s central computer, which has direct

access to the database that contains the relevant account data. Using RPC, the ATM

software can be written as if it also ran directly on the bank’s central computer. The

technical issues involved in actually doing the required communication are encapsu-

lated in the stub functions.

Exercise 171 Can any C function be used by RPC?

12.2.2 Message Passing

RPC organizes communication into structured and predefined pairs: send a set of

arguments, and receive a return value. Message passing allows more flexibility by

allowing arbitrary interaction patterns. For example, you can send multiple times,

without waiting for a reply.

Messages are chunks of data

On the other hand, message passing retains the partitioning of the data into “chunks”

— the messages. There are two main operations on messages:

send(to, msg, sz) — Send a message of a given size to the addressed recipient.

msg is a pointer to a memroy buffer that contains the data to send, and sz is it’s

size.

receive(from, msg, sz) —Receive a message, possibly only from a specific sender.

The arguments are typically passed by reference. from may name a specific

sender. Alternatively, it may contain a “dontcare” value, which is then overwrit-

ten by the ID of the actual sender of the received message. msg is a pointer to

a memory buffer where the data is to be stored, and sz is the size of the buffer.

This limits the maximal message size that can be received, and longer messages

will be truncated.

Exercise 172 Should the arguments to send be passed by reference or by value?

Receiving a message can be problematic if you don’t know in advance what it’s size

will be. A common solution is to decree a maximal size that may be sent; recipients

then always prepare a buffer of this size, and can therefore receive any message.

Exercise 173 Is it possible to devise a system that can handle messages of arbitrary

size?

213



Sending and receiving are discrete operations, applied to a specific message. This

allows for special features, such as dropping a message and proceeding directly to the

next one. It is also the basis for collective operations, in which a whole set of pro-

cesses participate (e.g. broadcast, where one process sends information to a whole set

of other processes). These features make message passing attractive for communica-

tion among the processes of parallel applications. It is not used much in networked

settings.

12.2.3 Streams: Unix Pipes, FIFOs, and Sockets

Streams just pass the data piped through them in sequential, FIFO order. The dis-

tinction from message passing is that they do not maintain the structure in which the

data was created. This idea enjoys widespread popularity, and has been embodied in

several mechanisms.

Streams are similar to files

One of the reasons for the popularity of streams is that their use is so similar to the

use of sequential files. You can write to them, and the data gets accumulated in the

order you wrote it. You can read from them, and always get the next data element

after where you dropped off last time.

Exercise 174 Make a list of all the attributes of files. Which would you expect to de-

scribe streams as well?

Pipes are FIFO files with special semantics

Once the objective is defined as inter-process communication, special types of files can

be created. A good example is Unix pipes.

A pipe is a special file with FIFO semantics: it can be written sequentially (by

one process) and read sequentially (by another). There is no option to seek to the

middle, as is possible with regular files. In addition, the operating system provides

some special related services, such as

• If the process writing to the pipe is much faster than the process reading from

it, data will accumulate unnecessarily. If this happens, the operating system

blocks the writing process to slow it down.

• If a process tries to read from an empty pipe, it is blocked rather then getting an

EOF.

• If a process tries to write to a pipe that no process can read (because the read

end was closed), the process gets a signal. On the other hand, when a process

tries to read from a pipe that no process can write, it gets an EOF.

214



Exercise 175 How can these features be implemented efficiently?

The problem with pipes is that they are unnamed: they are created by the pipe
system call, and can then be shared with other processes created by a fork. They

cannot be shared by unrelated processes. This gap is filled by FIFOs, which are es-

sentially named pipes. This is a special type of file, and appears in the file name

space.

To read more: See the man page for pipe. The mechanics of stringing processes together are

described in detail in Appendix D. Named pipes are created by the mknode system call, or by

the mkfifo shell utility.

In the original Unix system, pipes were implemented using the file system infras-

tructure, and in particular, inodes. In modern systems they are implemented as a

pair of sockets, which are obtained using the socketpair system call.

Sockets support client-server computing

A much more general mechanism for creating stream connections among unrelated

processes, even on different systems, is provided by sockets. Among other things,

sockets can support any of a wide variety of communication protocols. The most com-

monly used are the internet protocols, TCP/IP (which provides a reliable stream of

bytes), and UDP/IP (which provides unreliable datagrams).

The way to set up a connection is asymmetric. The first process, which is called

the server, does the following (using a somewhat simplified API).

fd=socket() First, it creates a socket. This means that the operating system al-

locates a data structure to keep all the information about this communication

channel, and gives the process a file descriptor to serve as a handle to it.

bind(fd, port) The server then binds this socket (as identified by the file descrip-

tor) to a port number. In effect, this gives the socket a name that can be used by

clients: the machine’s IP (internet) address together with the port are used to

identify this socket (you can think of the IP address as a street address, and the

port number as a door or suite number at that address). Common services have

predefined port numbers that are well-known to all (to be described in Section

12.4). For other distributed applications, the port number is typically selected

by the programmer.

listen(fd) To complete the setup, the server then listens to this socket. This noti-

fies the system that communication requests are expected.

The other process, called the client, does the following.

fd=socket() First, it also creates a socket.

215



connect(fd, addr, port) It then connects this socket to the server’s socket, by

giving the server’s IP address and port. This means that the server’s address and

port are listed in the local socket data structure, and that a message regarding

the communication request is sent to the server. The system on the server side

finds the server’s socket by searching according to the port number.

To actually establish a connection, the server has to take an additional step:

newfd=accept(fd) After the listen call, the original socket is waiting for connec-

tions. When a client connects, the server needs to accept this connection. This

creates a new socket that is accessed via a new file descriptor. This new socket

(on the server’s side) and the client’s socket are now connected, and data can be

written to and read from them in both directions.

After a connection is accepted the asymmetry of setting up the connection is forgotten,

and both processes now have equal standing. However, the original socket created by

the server still exists, and it may accept additional connections from other clients.

This is motivated below in Section 12.3.

Exercise 176 What can go wrong in this process? What happens if it does?

Concurrency and asynchrony make things hard to anticipate

Distrubuted systems and applications are naturally concurrent and asynchronous:

many different things happen at about the same time, in an uncoordinated manner.

Thus a process typically cannot know what will happen next. For example, a process

may have opened connections with several other processes, but cannot know which of

them will send it some data first.

The select system call is designed to help with such situations. This system call

receives a set of file descriptors as an argument. It then blocks the calling process

until any of the sockets represented by these file descriptors has data that can be

read. Alternatively, a timeout may be set; if no data arrives by the timeout, the

select will return with a failed status.

On the other hand, using streams does provide a certain built-in synchronization:

due to the FIFO semantics, data cannot be read before it is written. Thus a process

may safely try to read data from a pipe or socket. If no data is yet available, the

process will either block waiting for data to become available or will receive an error

notification — based on the precise semantics of the stream.

To readmore: See the man pages for socket, bind, connect, listen, accept, and select.

12.2.4 Shared Memory

Shared access to the same memory is the least structured approach to communica-

tion. There are no restrictions on how the communicating processes behave. In par-

216



ticular, there is no a-priori guarantee that one process write the data before another

attempts to read it.

Within the same system, processes can communicate using shared memory

Recall that a major part of the state of a process is its memory. If this is shared

among a number of processes, they actually operate on the same data, and thereby

communicate with each other.

Rather than sharing the whole memory, it is possible to only share selected re-

gions. For example, the Unix shared memory system calls include provisions for

• Registering a name for a shared memory region of a certain size.

• Mapping a named region of shared memory into the address space.

The system call that maps the region returns a pointer to it, that can then be used to

access it. Note that it may be mapped at different addresses in different processes.

To read more: See the man pages for shmget and shmat.

Exercise 177 How would you implement such areas of shared memory? Hint: think

about integration with the structures used to implement virtual memory.

In some systems, it may also be possible to inherit memory across a fork. Such

memory regions become shared between the parent and child processes.

distributed shared memory may span multiple machines

The abstraction of shared memory may be supported by the operating system even

if the communicating processes run on distinct machines, and the hardware does not

provide them direct access to each other’s memory. This is called distributed shared

memory (DSM).

The implementation of DSM hinges on playing tricks with the mechanisms of vir-

tual memory. Recall that the page table includes a present bit, which is used by the

operating system to indicate that a page is indeed present and mapped to a frame of

physical memory. If a process tries to access a page that is not present, a page fault is

generated. Normally this causes the operating system to bring the page in from per-

manent storage on a disk. In DSM, it is used to request the page from the operating

system on another machine, where it is being used by another process. Thus DSM

is only possible on a set of machines running the same system type, and leads to a

strong coupling between them.

While the basic idea behind the implementation of DSM is simple, getting it to

perform well is not. If only one copy of each page is kept in the system, it will have

to move back and forth between the machines running processes that access it. This

will happen even if they actually access different data structures that happen to be

mapped to the same page, a situation known as false sharing. Various mechanisms

have been devised to reduce such harmful effects, including

217



• Allowing multiple copies of pages that are only being read.

• Basing the system on objects or data structures rather than on pages.

• Partitioning pages into sub-pages and moving them independently of each other.

Exercise 178 Is there a way to support multiple copies of pages that are also written,

that will work correctly when the only problem is actually false sharing?

To read more: A thorough discussion of DSM is provided by Tanenbaum [8], chapter 6. An

interesting advanced system which solves the granularity problem is MilliPage [3].

Sharing memory leads to concurrent programming

The problem with shared memory is that its use requires synchronization mecha-

nisms, just like the shared kernel data structures we discussed in Section 4.1. How-

ever, this time it is the user’s problem. The operating system only has to provide the

means by which the user will be able to coordinate the different processes. Many

systems therefore provide semaphores as an added service to user processes.

Exercise 179 Can user processes create a semaphore themselves, in a way that will

block them if they cannot gain access? Hint: think about using pipes. This solution is

good only among related processes within a single system.

Files also provide a shared data space

An alternative to shared memory, that is supported with no extra effort, is to use

the file system. Actually, files are in effect a shared data repository, just like shared

memory. Moreover, they are persistent, so processes can communicate without over-

lapping in time. However, the performance characteristics are quite different — file

access is much slower than shared memory.

Exercise 180 Is it possible to use files for shared memory without suffering a disk-

related performance penalty?

12.3 Distributed System Structures

Using the interfaces described above, it is possible to create two basic types of dis-

tributed systems or applications: symmetrical or asymmetrical.

218



Symmetrical communications imply peer to peer relations

In symmetric applications or systems, all processes are peers. This is often the case

for processes communicating via shared memory or pipes, and is the rule in parallel

applications.

Peer-to-peer systems, such as those used for file sharing, are symmetrical in a dif-

ferent sense: in such systems, all nodes act both as clients and as servers. Therefore

some of the differences between clients and servers described below do not hold.

Client-server communications are asymmetrical

The more common approach, however, is to use an asymmetrical structure: one pro-

cess is designated as a server, and the other is its client. This is used to structure the

application, and often matches the true relationship between the processes. Exam-

ples include

• A program running on a workstation is the client of a file server, and requests it

to perform operations on files.

• A program with a graphical user interface running on a workstation is a client

of the X server running on that workstation. The X server draws things on the

screen for it, and notifies it when input is events have occured in its window.

• A web browser is a client of a web server, and asks it for certain web pages.

• An ATM is a client of a bank’s central computer, and asks it for authorization

and recording of a transaction.

Client-server interactions can be programmed using any of the interfaces described

above, but are especially convenient using RPC or sockets.

Servers typically outlive their clients

An interesting distinction between peer-to-peer communication and client-server com-

munication is based on the temporal dimension: In peer-to-peer systems, all processes

may come and go individually, or in some cases, they all need to be there for the in-

teraction to take place. In client-server systems, on the other hand, the server often

exists for as long as the system is up, while clients come and go.

The implications of this situation are twofold. First, the server cannot anticipate

which clients will contact it and when. As a consequence, it is futile for the server

to try and establish contact with clients; rather, it is up to the clients to contact the

server. The server just has to provide a means for clients to find it, be it by registering

in a name service or by listening on a socket bound to a well-known port.

Second, the server must be ready to accept additional requests from clients at any

moment. This is the reason for the accept mentioned above. Before calling accept,

219



the incoming request from the client ties up the socket bound to the well-know port,

which is the server’s advertised entry point.

arbitrary port
assigned automatically

port
well−known

client
process

IP server
process

IP

fd=3 fd=3

By calling accept, the server re-routes the incoming connection to a new socket rep-

resented by another file descriptor. This leaves the original socket free to receive ad-

ditional clients, while the current one is being handled. Moreover, if multiple clients

arrive, each will have a separate socket, allowing for unambiguous communication

with each one of them. The server will often also create a new thread to handle the

interaction with each client, to furhter encapsulate it.

Z
thread

Y
thread

X
thread

port 5678

port 1234

src=1234@A

src=other

src=5678@B

port
well−known

fd=3

fd=3

fd=4

fd=5

fd=3

host A

host B

client B IP

IPclient A
IP server

Note that the distinction among connections is done by the IP addresses and port

numbers of the two endpoints. All the different sockets created by accept share the

same port on the server side. But they have different clients, and this is indicated

in each incoming communication. Communications coming from an unknown source

are routed to the original socket.

12.4 Example Client-Server Systems

To read more: Writing client-server applications is covered in length in several books on

TCP/IP programming, e.g. Commer [2].

Many daemons are just server processes

Unix daemons are server processes that operate in the background. They are used

to provide various system services that do not need to be in the kernel, e.g. support

for email, file spooling, performing commands at pre-defined times, etc. In particular,

220



daemons are used for various services that allow systems to inter-operate across a

network. In order to work, the systems have to be related (e.g. they can be different

versions of Unix). The daemons only provide a weak coupling between the systems.

Naming is based on conventions regarding port numbers

The format and content of the actual communication performed by the daemons is

daemon-specific, depending on its task. The addressing of daemons relies on uni-

versal conventions regarding the usage of certain ports. In Unix systems, the list of

well-known services and their ports are kept in the file /etc/services. Here is a short

excerpt:

port usage

21 ftp

23 telnet

25 smtp (email)

42 name server

70 gopher

79 finger

80 http (web)

Exercise 181 What happens if the target system is completely different, and does not

adhere to the port-usage conventions?

As an example, consider the finger command. Issuing finger joe@hostname.dom
causes a message to be sent to port 79 on the named host. It is assumed that when

that host booted, it automatically started running a finger daemon that is listening on

that port. When the query arrives, this daemon receives it, gets the local information

about joe, and sends it back.

Exercise 182 Is it possible to run two different web servers on the same machine?

To read more: Writing deamons correctly is an art involving getting them to be completely

independent of anything else in the system. See e.g. Stevens [7, Sect. 2.6].

Communication is done using predefined protocols

To contact a server, the client sends the request to a predefined port on faith. In

addition, the data itself must be presented in a predefined format. For example,

when accessing the finger daemon, the data sent is the login of the user in which we

are interested. The server reads whatever comes over the connection, assumes this is

a login name, and tries to find information about it. The set of message formats that

may be used and their semantics are called a communication protocol.

In some cases, the protocols can be quite extensive and complicated. An example

is NFS, the network file system. Communication among clients and servers in this

221



system involves many operations on files and directories, including lookup and data

access. The framework in which this works is described in more detail in Section 14.2.

12.5 Middleware

Unix daemons are an example of a convention that enables different versions of the

same system to interact. To some degree other systems can too, by having programs

listen to the correct ports and follow the protocols. But there is a need to generalize

this sort of interoperability. This is done by middleware.

Heterogeneity hinders interoperability

As noted above, various communication methods such as RPC and sockets rely on the

fact that the communicating systems are identical or at least very similar. But in the

real world, systems are very heterogeneous. This has two aspects:

• Architectural heterogeneity: the hardware may have a different architecture.

The most problematic aspect of different architectures is that different formats

may be used to represent data. Examples include little endian or big endian

ordering of bytes, twos-complement or ones-complement representation of inte-

gers, IEEE standard or proprietary representations of floating point numbers,

and ASCII or EBCDIC representation of characters. If one machine uses one

format, but the other expects another, the intended data will be garbled.

• System heterogeneity: different operating systemsmay implement key protocols

slightly differently, and provide somewhat different services.

For example, consider an application that runs on a desktop computer and needs

to access a corporate database. If the database is hosted by a mainframe that uses

different data representation and a different system, this may be very difficult to

achieve.

Middleware provides a common ground

The hard way to solve the problem is to deal with it directly in the application. Thus

the desktop application will need to acknowledge the fact that the database is differ-

ent, and perform the necessary translations in order to access it correctly. This creates

considerable additional work for the developer of the aplication, and is specific for the

systems in question.

A much better solution is to use a standard software layer that handles the trans-

lation of data formats and service requests. This is what middleware is all about.

222



CORBA provides middleware for objects

The most pervasive example of middleware is probably CORBA (common object re-

quest broker architecture). This provides a framework that enables the invokation of

methods in remote objects and across heterogeneous platforms. Thus it is an exten-

sion of the idea of RPC.

The CORBA framework consists of sevaral components. One is the interface def-

inition language (IDL). This enables objects to provide their specification in a stan-

dardized manner, and also enables clients to specify the interfaces that they seek to

invoke.

The heart of the system is the object request broker (ORB). This is a sort of naming

service where objects register their methods, and clients search for them. The ORB

makes the match and facilitates the connection, including the necessary translations

to compensate for the heterogeneity. Multiple ORBs can also communicate to create

one large object space, where all methods are available for everyone.

12.6 Summary

Abstractions

Interprocess communication as described here is mainly about abstractions, each with

its programming interface, properties, and semantics. For example, streams include

a measure of synchronization among the communicating processes (you can’t receive

data that has not been sent yet), whereas shared memory does not include implied

synchronization and therefore some separate synchronization mechanism may need

to be used.

Resource management

A major resource in communications is the namespace. However, this is so basic that

it isn’t really managed; Instead, it is either used in a certain way by convention (e.g.

well-known port numbers) or up for grabs (e.g. registration with a name server).

Workload issues

Workloads can also be interpreted as a vote of popularity. In this sense, sockets are

used overwhelmingly as the most common means for interprocess communication.

Most other means of communication enjoy only limited and specific uses.

Hardware support

As we didn’t discuss implementations, hardware support is irrelevant at this level.

223



Bibliography

[1] D. E. Comer, Computer Networks and Internets. Prentice Hall, 2nd ed., 1999.

[2] D. E. Comer and D. L. Stevens, Internetworking with TCP/IP, Vol. III: Client-

Server Programming and Applications. Prentice Hall, 2nd ed., 1996.

[3] A. Schuster et al., “MultiView and MilliPage — fine-grain sharing in page-based

DSMs”. In 3rd Symp. Operating Systems Design & Implementation, pp. 215–228,

Feb 1999.

[4] A. Silberschatz and P. B. Galvin, Operating System Concepts. Addison-Wesley, 5th

ed., 1998.

[5] W. Stallings, Data and Computer Communications. Macmillan, 4th ed., 1994.

[6] W. Stallings, Operating Systems: Internals and Design Principles. Prentice-Hall,

3rd ed., 1998.

[7] W. R. Stevens, Unix Network Programming. Prentice Hall, 1990.

[8] A. S. Tanenbaum, Distributed Operating Systems. Prentice Hall, 1995.

[9] A. S. Tanenbaum, Computer Networks. Prentice-Hall, 3rd ed., 1996.

224


