
Pseudo-Random Generators

Topics

• Why do we need random numbers?
• Truly random and Pseudo-random numbers.
• Definition of pseudo-random-generator 
• What do we expect from pseudo-

randomness?
• Testing for pseudo-randomness.
• Example for PRNG algorithm.
• Linux PRNG 

Why do we need 
random numbers?

• Simulation
• Sampling
• Numerical analysis
• Computer programming (e.g. randomized 

algorithm)
• Elementary and critical element in many 

cryptographic protocols Usually:
– “… Alice picks key K at random …”
– Cryptosystems only secure if keys random.
– Session keys for symmetric ciphers.
– Nonce in different protocols  (to avoid replay)

Cryptography relies on 
randomness

• To encrypt e-mail, digitally sign
documents, or spend a few dollars
of electronic cash over the internet,
we need random numbers.

• If random numbers in any of these 
applications are insecure, then the entire 
application is insecure.

Truly Random Numbers

• Random bits are generated by a hardware 
that’s based on physical phenomena.

• Those numbers cannot be reliably 
reproduced or predicted.

• Generation of (truly) random bits is an 
inefficient procedure in most practical 
systems: slow & expensive.

• Storage and transmission of a large 
number of random bits may be impractical.

Pseudo-Random Numbers

Pseudorandom - Having the appearance of 
randomness, but nevertheless exhibiting a 
specific, repeatable pattern.

Random numbers are very difficult to generate, 
especially on computers which are designed 
to be deterministic devices.

The sequence is not truly random in that it is 
completely determined by a relatively small 
set of initial values, called the PRNG's state.



Pseudo-Random Numbers

• An Efficient (polynomial time) deterministic 
algorithm G.
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Random looking

Random looking means that:
• If the number is in the range: 0…n.
• And there are m numbers to be generated. 
• An observer given m-1 out of m numbers, 

cannot predict the mth number with better 
probability than 1/n.

The Seed
Can’t create randomness out of nothing.
• True physical sources of randomness that cannot be 

predicted: 
– Noise from a semiconductor device (Hardware).
– Resource utilization statistics and system load (Software).
– User's mouse movements.
– Device latencies.

• Use as a minimum security requirement the length n of 
the seed to a PRNG should be large enough to make 
brute-force search over all seeds infeasible for an 
attacker.

Normal RNG Operation
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The difference between Truly 
Random and Pseudo-Random

If one knows: The algorithm & seed used to 
create the numbers.

He can predict all the numbers returned by 
every call to the algorithm. 

With genuinely random numbers, knowledge 
of one number or a long sequence of 
numbers is of no use in predicting the next 
number to be generated.

What do we expect from
pseudo‐randomness?

• Long period : The generator should be of 
long period (the period of a random 
number generator is the number of times 
we can call it before the random sequence 
begins to repeat).

• Fast computation: The generator should 
be reasonably fast and low cost.



What do we expect from
pseudo‐randomness?

• Unbiased: The output of the generator has 
good statistical characteristics. 

• Unpredictable: Given a few first bits, it 
should not be easy to predict, or compute, 
the rest of the bits.

• Uncorrelated sequences - The sequences 
of random numbers should be serially 
uncorrelated.

Some basic ideas 
for tests

• Randomness is a probabilistic property: 
The properties of a random sequence can 
be characterized in terms of probability. 

• The following tests may be applied:
– Monobit Test: Are there equally many 1’s like 

0’s?
– Serial Test (Two-Bit Test): Are there equally 

many 00, 01, 10, 11 pairs?

Linear Congruential Method

Example for PRNG algorithm

Properties of Random Numbers
• Two important statistical properties:

– Uniformity

– Independence.

• Random Number, Ri, must be independently drawn from a 
uniform distribution with pdf:
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Linear Congruential Method
Techniques]

• To produce a sequence of integers, X1, X2, … between 0 and m‐1
by following a recursive relationship:

• The selection of the values for a, c, m, and X0 drastically affects 
the statistical properties and the cycle length.

• The random integers are being generated [0,m‐1], and to 
convert the integers to random numbers:
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Examples [LCM]

• Use X0 = 27, a = 17, c = 43, and m = 100.
• The Xi and Ri values are:

X1 = (17*27+43) mod 100 = 502 mod 100 = 2,
R1 = 0.02;
X2 = (17*2+43) mod 100 = 77, 
R2 = 0.77;
X3 = (17*77+43) mod 100 = 52, 
R3 = 0.52;
X4 = (17* 52 +43) mod 100 = 27, 
R4 = 0.27
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A Good LCG Example
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X=2456356; %seed value
for i=1:10000,
X=mod(1664525*X+1013904223,2^32);
U(i)=X/2^32;

end
edges=0:0.05:1;
M=histc(U,edges);
bar(M);
hold;

figure;
hold;
for i=1:5000,
plot(U(2*i‐1),U(2*i));

end

Linear Congruence 
Generators In Cryptography

• However, even high quality classical 
generators are mostly not usable in 
cryptography. Why?

• Because given several successive numbers 
that were generated by LCG, it is possible to 
compute the modulus and the multiplier with 
reasonable efficiency.

• Meaning: there is always the risk of “reverse 
engineering” of the generators.

RNG Security Requirements
• Pseudo-randomness

Output is indistinguishable from random

• Backward security
RNG outputs cannot be compromised by a 
break-in in the past 

• Forward security
RNG outputs cannot be compromised by a 
break-in in the future

Pseudo‐Random Generators
In Cryptography

• If generators are needed in cryptographic 
applications, they are usually created using 
the cryptographic primitives, such as:
– block ciphers
– hash functions 

• There is a natural tendency to assume that 
the security of these underlying primitives will 
translate to security for the PRNG.

Linux PNRG

Linux PNRG

• Implemented in the kernel.
– Entropy based PRNG

• Used by many applications
– TCP, PGP, SSL, S/MIME, …

• Two interfaces
– Kernel interface – get_random_bytes (non-

blocking)
– User interfaces –

/dev/random   (blocking) 
/dev/urandom (non-blocking)



Entropy estimation

• A counter estimates the physical entropy in the 
LRNG

• Increased on entropy addition (from OS events)
• Decreased on data extraction.
• blocking and non-blocking interfaces

– Blocking interface does not provide output when 
entropy estimation reaches zero

– Non-blocking interface always provides output
– Blocking interface is “considered more secure”

Entropy Collection

• Events are represented by two 32-bit words
– Event type.

• E.g., mouse press, keyboard value
– Event time in milliseconds.

• Bad news:
– Actual entropy in every event is very limited

• Good news:
– There are many of these events…

LRNG structure
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