Experimental Approaches in Computer Science

Dror Feitelson
Hebrew University

Lecture 12 – Experimental Algorithmics
Case studies

- Online scheduling
- Matrix multiplication
- Maximum flow
Online scheduling
• Problem definition: Given \(n \) jobs with known processing times process them on \(m \) identical machines so as to minimize the makespan.

• Graham's list scheduling [1966]: put the jobs in a list and whenever a machine becomes idle assign the next job to this machine.

• Claim: Graham's simple greedy algorithm is \(\left(2 - \frac{1}{m} \right) \)-competitive.
Proof:
Let c^* denote the optimal makespan
then $c^* \geq p_{\text{max}}$ [accommodate longest job]
and $c^* \geq \frac{1}{m} \sum p_j$ [accommodate total processing needed]

assume job k is the last one to terminate
then it starts no later than $\frac{1}{m} \sum_{j\neq k} p_j$
because no machine is idle before all jobs start
Its termination time is then no later than its start time + processing time:

\[c_k \leq \frac{1}{m} \sum_{j \neq k} p_j + p_k \]

\[\leq \sum_j p_j + (1 - 1/m)p_k \]

\[\leq c^* + (1 - 1/m)c^* \]

\[= (2 - 1/m)c^* \]
Improvements:

- Bartal et al. [1995]: 1.986-competitive algorithm
- Karger et al. [1996]: 1.945-competitive algorithm
- Albers [1997]: 1.923-competitive algorithm
- All use various seemingly arbitrary conditions to sometimes select a machine that is not the least loaded
- Question: is this generally good, or does it just avoid certain pathological cases?
Experimental evaluation:
[Albers & Schroder, J. Exp. Alg. 7(3), 2002]

- Use real-world job sizes
 - Parallel machines (MPPs at CTC, KTH)
 - Vector machine (Cray at PSC)
 - Workstation (Sun in Germany)

- Use distributions

- Create sequences of 10000 jobs, and tabulate running ratio of achieved makespan to optimal
Results KTH:

relatively low variance, so ratio stabilized after some fluctuations; Graham is best
Occasional big job similar to average so far.

Graham suffers because loads are balanced, and one machine will need to work much more; others leave machines less loaded in anticipation of such jobs.
job sizes have a heavy tail: some are so big they dominate the average. This causes both the online algorithm and the optimal makespan to be essentially equal, and the ratio drops to 1
Exponential:

Relatively low variability leads to quick convergence.

Similar results for uniform, Erlang, and hyperexponential with various parameter values.
Effect of number of jobs (m):

- All previous results were for $m=10$
- When m grows, it takes longer for ratios to stabilize, because more jobs are needed to fill the machines
- Also, the effect of jobs that are similar to the average load is changed – given that the load is distributed on more machines, these jobs now look huge, and their effect is to reduce the ratio rather than to enlarge it
The bottom line: it depends on the workload

- Graham's simple greedy algorithm is best when job variance is low
- Other algorithms, mainly Albers and Bartal, may reduce sensitivity to large jobs
- When the variance is extremely big due to a heavy tail, the algorithm has little effect
Matrix Multiplication
Problem definition:

- The straightforward n^3 algorithm
- Take into account the memory hierarchy
 - Cache capacity
 - Cache associativity
 - Contention for the system bus
 - Memory latency
- An instance of algorithm engineering

[Eiron et al. J. Exp. Alg. 4(3), 1999]
Idea 1: use tiling

- Use tiles that fit into the cache, to avoid capacity misses
- Retain ratio of multiple operations per given data

Matrix A

Matrix B

Matrix C
Idea 2: use prefetching

- In each phase prefetch the data needed in the next phase
- If all data is in the cache, computation does not use the system bus at all
- But is therefore free for use by prefetching
- Need to time the prefetches so as to avoid evicting needed data (assumes LRU cache replacement)
Tile size constraints

- Computation per tile multiplication is \(O(P_1 P_2 P_3) \)
- Data to prefetch is \(O(P_1 P_2 + P_2 P_3 + P_1 P_3) \)
- Also need to write back \(C \) tile of \(P_1 P_3 \)
- Enough time if \(P_1 P_2 P_3 > P_1 P_2 + P_2 P_3 + 2P_1 P_3 \)
- Enough space if \(2(P_1 P_2 + P_2 P_3 + P_1 P_3) < C \)
- Can reduce prefetching/writeback by reusing \(C \) tile for full row of \(A \) tiles and column of \(B \) tiles
Idea 3: copy to avoid conflicts

- Copy tiles to different addresses so that they fall in different cache associativity sets
- Assuming k-way associativity, ensure that each set is used only $k/2$ times

Simple example:
- 2-way associativity
- Interleave tiles from the different caches
- Use offset that is a multiple of the way size
- Being 2-way allows 2 tiles from each matrix to be cache resident
Implementation:

- IBM PowerPC model 604
- Use fma (floating multiply-add) instruction, which is ideal for matrix/vector multiplication
 - Theoretical peak of 266 MFLOPS
- Don't use dcbt (data cache block touch) instruction for prefetching, but rather a register load
 - dcbt doesn't work when TLB misses
 - Can't be triggered from source level
Performance:
better and more predictable than highly tuned code
Maximum Flow
Problem definition:

given a graph $G=(V,E)$, with two distinguished nodes s and t, where each edge e has capacity $c(e)$, find the maximum possible flow from s to t

we'll focus on unit capacity ($c(e)=1$ for all edges)
Flow definition:

A flow is a function \(f : V \times V \rightarrow \mathbb{R} \) such that

- \(f(u,v) \leq c(u,v) \) \hspace{1cm} [capacity constraint]
- \(f(u,v) = -f(v,u) \) \hspace{1cm} [anti-symmetry]
- \(\sum_v f(u,v) = 0 \) \hspace{1cm} [conservation constraint]

(holds for all \(u \) except \(s \) and \(t \))

The value to maximize is \(\sum_v f(s,v) \)
Main algorithms:

- Path augmentation
- Preflow push-relabel
Path augmentation

• Invariant: always maintain a legitimate flow
• Start with a 0 flow
• At each step
 – Find a path from s to t that has capacity to spare
 – Add a flow along this path
• Terminate when no additional paths can be found
• Complexity: $O(E |f|)$ with $|f|$ is max

Variants: BFS? DFS?
Preflow push-relabel

- Invariant: maintains a preflow (allow excess input to a node)
- Initially s is at level $|V|$, t and all others at 0
- For all overflowing nodes (starting with s) fill outgoing links to nodes at lower level to capacity
- If all unsaturated outbound links are to nodes at same or higher level, relabel the node to level one higher than lowest unsaturated neighbor
- At end, nodes with excess flow will migrate above the source and push the excess back
- Complexity: $O(V^2 E)$

Variants: order of push and relabel ops, use of optimizations
Optimizations:

- **Global relabel**
 - Push and relabel are local operations
 - State may drift away from global optimum
 - Optimization is to do a global scan and relabel all nodes consistently in one sweep

- **Gap heuristic:**
 - If there are no nodes with label d, all those with higher labels return excess to s
 - Saves the need to raise their level by single steps to above $|V|$
Experimental questions:

- Augment or push?
- What is the effect of variants and optimizations?
- How does this depend on different input graph instances?

[Cerkassky et al. J Exp. Alg. 3(8), 1998]
Methodology: use random graphs from various different families
Table 1. Summary of results. Blank is good, o is fair, and * is poor.

<table>
<thead>
<tr>
<th></th>
<th>DFS</th>
<th>BFS</th>
<th>LDS</th>
<th>AR</th>
<th>FIFO</th>
<th>LO</th>
<th>HI</th>
</tr>
</thead>
<tbody>
<tr>
<td>fewg</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>manyg</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hi-lo</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>grid</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hexa</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rope</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>o</td>
</tr>
<tr>
<td>zipf</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>karz</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rmfuC</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rmfuL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>rmfuW</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>blow</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>puff</td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>saus</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>squa</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>wave</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Experimental results

Plots for graph families
Lines for algorithms
Conclusions:

- No single algorithm is best for all graph types
- Both BFS and DFS (path augmentation) are not robust, with bad performance for many graph families
- The best push-relabel methods are generally more robust than the best augmented flow
- The added heuristics are important for the achieved performance