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Common Mistakes

 Repeated often
 Don’t you make them!
 How to recognize the danger signals?
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Danger Signals (1)
public class Counter {
  public int howManyA(String s) {
    int conut = 0;
    for(int i = 0; i < s.length(); ++i)
      if(s.charAt(i) == 'a')
        ++count;
    return count;
  }  
}

Is this a class?
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Danger Signals (2)

Class City extends Place { … }
Class Jerusalem extends City 
implements Capital { … }

Class TelAviv extends City { … }

 What is wrong here?
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Danger Signals (3)

Class Person {
String getName(); void setName(String 
name);

int getAge(); void setAge(int age);
Car getCar(); void setCar(Car car);

}

 What do we see ?
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Basic Design Principles (abridged)

 The Open Closed Principle
 The Dependency Inversion Principle
 The Interface Segregation Principle
 The Acyclic Dependencies Principle
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The Open Closed Principle
 Software entities (classes, modules, 

functions, etc.) should be open for 
extension, but closed for modification. 

 In the OO way:
• A class should be open for extension, but 

closed for modification. 
 Existing code should not be changed – 

new features can be added using 
inheritance or composition.
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Example
enum ShapeType 
{circle, square};

struct Shape {
  ShapeType _type;
};
struct Circle {
ShapeType _type;
double _radius;
Point _center;

};

struct Square {
ShapeType _type;
double _side;
Point _topLeft;

};
void DrawSquare(struct 
Square*)

void DrawCircle(struct 
Circle*);
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Example (cont.)
void DrawAllShapes(struct Shape* list[], int n) {

int i;
for (i=0; i<n; i++) {

struct Shape* s = list[i];
switch (s->_type) {

case square:
DrawSquare((struct Square*)s);
break;
case circle:
DrawCircle((struct Circle*)s);
break;

}
}

}
Where is the violation?
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Correct Form
class Shape {
public:

virtual void Draw() const = 0;
};
class Square : public Shape {
public:

virtual void Draw() const;
};
class Circle : public Shape {
public:

virtual void Draw() const;
};

void DrawAllShapes(Set<Shape*>& list) {
for (Iterator<Shape*>i(list); i; i++)

(*i)->Draw();
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The Dependency Inversion Principle

A. High level modules should not depend 
upon low level modules. Both should 
depend upon abstractions. 

B. Abstractions should not depend upon 
details. Details should depend upon 
abstractions. 
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Example

void Copy() {
int c;
while ((c = ReadKeyboard()) != EOF)
WritePrinter(c);

}

Where is the violation?
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Example (cont.)
 Now we have a second writing device – disk

enum OutputDevice {printer, disk};

void Copy(outputDevice dev) {
int c;
while ((c = ReadKeyboard()) != EOF)

if (dev == printer)
WritePrinter(c);

else
WriteDisk(c);

}
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Correct form
class Reader {
  public:
  virtual int Read() = 0;
};
class Writer {
  public:
    virtual void Write(char)=0;
};
void Copy(Reader& r, 
          Writer& w) {
  int c;
  while((c=r.Read()) != EOF)
    w.Write(c);
}



May 28, 2008 Object Oriented Design Course 15

The Interface Segregation Principle

 The dependency of one class to 
another one should depend on the 
smallest possible interface. 

 Avoid “fat” interfaces
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The Interface Segregation Principle
ClientA

ClientB

ClientC

Service

clientAMethods()
clientBMethods()
clientCMethods()

<<Interface>>
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The Interface Segregation Principle

ClientA

ClientB

ClientC

ClientAService

clientAMethods()

<<Interface>>

ClientBService

clientBMethods()

<<Interface>>

ClientCService

clientCMethods()

<<Interface>>

ServiceImpl

clientAMethods()
clientBMethods()
clientCMethods()
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Example

class Door {
  public:
  virtual void Lock() = 0;
  virtual void Unlock() = 0;
  virtual bool IsDoorOpen() = 0;
};

class Timer {
  public:
  void Regsiter(int timeout,
       TimerClient* client);
};

class TimerClient {
  public:
  virtual void TimeOut() = 0;
};
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A Timed Door
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Correct Form
 Two options:

Adapter Multiple Inheritance
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The Acyclic Dependencies Principle

 The dependency structure between 
packages must not contain cyclic 
dependencies. 
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Example

gui

comm

modem protocol

comm_error

process

file



May 28, 2008 Object Oriented Design Course 23

Correct Form
gui

comm

modem protocol

comm_error

process

file
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Example 2

A

B

X

Y

A

B

X

YB I n t e r f a c e
i m p l e m e n t s
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The Law Of Demeter

 Only talk to your immediate friends. 
 In other words:

• You can play with yourself. (this.method())

• You can play with your own toys (but you can't take 
them apart). (field.method(), field.getX())

• You can play with toys that were given to you. 
(arg.method())

• And you can play with toys you've made yourself.  
(A a = new A(); a.method())
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Example



May 28, 2008 Object Oriented Design Course 27

How to correct
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Example Code
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Resources

 Our resources page
 http://www.objectmentor.com/ 

resources/articleIndex
• Don’t be afraid from “old” articles
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