
Common mistakes and
Basic Design Principles

David Rabinowitz

May 28, 2008 Object Oriented Design Course 2

Common Mistakes

 Repeated often
 Don’t you make them!
 How to recognize the danger signals?

May 28, 2008 Object Oriented Design Course 3

Danger Signals (1)
public class Counter {
 public int howManyA(String s) {
 int conut = 0;
 for(int i = 0; i < s.length(); ++i)
 if(s.charAt(i) == 'a')
 ++count;
 return count;
 }
}

Is this a class?

May 28, 2008 Object Oriented Design Course 4

Danger Signals (2)

Class City extends Place { … }
Class Jerusalem extends City
implements Capital { … }

Class TelAviv extends City { … }

 What is wrong here?

May 28, 2008 Object Oriented Design Course 5

Danger Signals (3)

Class Person {
String getName(); void setName(String
name);

int getAge(); void setAge(int age);
Car getCar(); void setCar(Car car);

}

 What do we see ?

May 28, 2008 Object Oriented Design Course 6

Basic Design Principles (abridged)

 The Open Closed Principle
 The Dependency Inversion Principle
 The Interface Segregation Principle
 The Acyclic Dependencies Principle

May 28, 2008 Object Oriented Design Course 7

The Open Closed Principle
 Software entities (classes, modules,

functions, etc.) should be open for
extension, but closed for modification.

 In the OO way:
• A class should be open for extension, but

closed for modification.
 Existing code should not be changed –

new features can be added using
inheritance or composition.

May 28, 2008 Object Oriented Design Course 8

Example
enum ShapeType
{circle, square};

struct Shape {
 ShapeType _type;
};
struct Circle {
ShapeType _type;
double _radius;
Point _center;

};

struct Square {
ShapeType _type;
double _side;
Point _topLeft;

};
void DrawSquare(struct
Square*)

void DrawCircle(struct
Circle*);

May 28, 2008 Object Oriented Design Course 9

Example (cont.)
void DrawAllShapes(struct Shape* list[], int n) {

int i;
for (i=0; i<n; i++) {

struct Shape* s = list[i];
switch (s->_type) {

case square:
DrawSquare((struct Square*)s);
break;
case circle:
DrawCircle((struct Circle*)s);
break;

}
}

}
Where is the violation?

May 28, 2008 Object Oriented Design Course 10

Correct Form
class Shape {
public:

virtual void Draw() const = 0;
};
class Square : public Shape {
public:

virtual void Draw() const;
};
class Circle : public Shape {
public:

virtual void Draw() const;
};

void DrawAllShapes(Set<Shape*>& list) {
for (Iterator<Shape*>i(list); i; i++)

(*i)->Draw();

May 28, 2008 Object Oriented Design Course 11

The Dependency Inversion Principle

A. High level modules should not depend
upon low level modules. Both should
depend upon abstractions.

B. Abstractions should not depend upon
details. Details should depend upon
abstractions.

May 28, 2008 Object Oriented Design Course 12

Example

void Copy() {
int c;
while ((c = ReadKeyboard()) != EOF)
WritePrinter(c);

}

Where is the violation?

May 28, 2008 Object Oriented Design Course 13

Example (cont.)
 Now we have a second writing device – disk

enum OutputDevice {printer, disk};

void Copy(outputDevice dev) {
int c;
while ((c = ReadKeyboard()) != EOF)

if (dev == printer)
WritePrinter(c);

else
WriteDisk(c);

}

May 28, 2008 Object Oriented Design Course 14

Correct form
class Reader {
 public:
 virtual int Read() = 0;
};
class Writer {
 public:
 virtual void Write(char)=0;
};
void Copy(Reader& r,
 Writer& w) {
 int c;
 while((c=r.Read()) != EOF)
 w.Write(c);
}

May 28, 2008 Object Oriented Design Course 15

The Interface Segregation Principle

 The dependency of one class to
another one should depend on the
smallest possible interface.

 Avoid “fat” interfaces

May 28, 2008 Object Oriented Design Course 16

The Interface Segregation Principle
ClientA

ClientB

ClientC

Service

clientAMethods()
clientBMethods()
clientCMethods()

<<Interface>>

May 28, 2008 Object Oriented Design Course 17

The Interface Segregation Principle

ClientA

ClientB

ClientC

ClientAService

clientAMethods()

<<Interface>>

ClientBService

clientBMethods()

<<Interface>>

ClientCService

clientCMethods()

<<Interface>>

ServiceImpl

clientAMethods()
clientBMethods()
clientCMethods()

May 28, 2008 Object Oriented Design Course 18

Example

class Door {
 public:
 virtual void Lock() = 0;
 virtual void Unlock() = 0;
 virtual bool IsDoorOpen() = 0;
};

class Timer {
 public:
 void Regsiter(int timeout,
 TimerClient* client);
};

class TimerClient {
 public:
 virtual void TimeOut() = 0;
};

May 28, 2008 Object Oriented Design Course 19

A Timed Door

May 28, 2008 Object Oriented Design Course 20

Correct Form
 Two options:

Adapter Multiple Inheritance

May 28, 2008 Object Oriented Design Course 21

The Acyclic Dependencies Principle

 The dependency structure between
packages must not contain cyclic
dependencies.

May 28, 2008 Object Oriented Design Course 22

Example

gui

comm

modem protocol

comm_error

process

file

May 28, 2008 Object Oriented Design Course 23

Correct Form
gui

comm

modem protocol

comm_error

process

file

May 28, 2008 Object Oriented Design Course 24

Example 2

A

B

X

Y

A

B

X

YB I n t e r f a c e
i m p l e m e n t s

May 28, 2008 Object Oriented Design Course 25

The Law Of Demeter

 Only talk to your immediate friends.
 In other words:

• You can play with yourself. (this.method())

• You can play with your own toys (but you can't take
them apart). (field.method(), field.getX())

• You can play with toys that were given to you.
(arg.method())

• And you can play with toys you've made yourself.
(A a = new A(); a.method())

May 28, 2008 Object Oriented Design Course 26

Example

May 28, 2008 Object Oriented Design Course 27

How to correct

May 28, 2008 Object Oriented Design Course 28

Example Code

May 28, 2008 Object Oriented Design Course 29

Resources

 Our resources page
 http://www.objectmentor.com/

resources/articleIndex
• Don’t be afraid from “old” articles

	Common mistakes Basic Design Principles
	Common Mistakes
	Danger Signals (1)
	Danger Signals (2)
	Danger Signals (3)
	Basic Design Principles (abridged)
	The Open Closed Principle
	Example
	Example (cont.)
	Correct Form
	The Dependency Inversion Principle
	Slide 12
	Slide 13
	Correct form
	The Interface Segregation Principle
	Slide 16
	Slide 17
	Slide 18
	A Timed Door
	Slide 20
	The Acyclic Dependencies Principle
	Slide 22
	Slide 23
	Example 2
	The Law Of Demeter
	Slide 26
	How to correct
	Example Code
	Resources

