
Theory of Computer Science to Msc Students, Spring 2007

Lecture 4

Lecturer: Dorit Aharonov Scribe: Ram Boukobza & Yair Yarom
Revised: Shahar Dobzinski, March 2007

1 FPTAS - Fully Polynomial Time Approximation Scheme

In the last lecture we have seen a (1−ε)-approximation algorithm for the Knapsack problem.
We have mentioned that this algorithm is an FPTAS for this problem. Let us now formally
define what an FPTAS is:

Definition 1 (FPTAS) An algorithm A is an FPTAS for an optimization problem P , if
given an input I for P and ε > 0, A finds in time polynomial in the size of I and in 1

ε , a
solution S for I that satisfies

|val(I)− val(S)| ≤ εval(I),

where val(I) is the optimal value of a solution for I.

In the last lecture we saw a FPTAS for the knapsack problem, is there a FPTAS for all
NP -Complete problems? As we shall see next, the answer is no (unless P = NP).

Definition 2 (SNP-C: Strong NP -Complete) Given a search problem Pi over the pos-
itive integers and a polynomial p, denote by Pip the restriction of Pi to instances I such
that val(I) ≤ p(length(I)) (length(I) is the length of the input instance I). We say that
Pi is NP -hard in the strong sense if there is a polynomial p over the integers such that
Pip is NP -hard. Pi is strongly NP -complete if it is NP -hard in the strong sense and the
corresponding decision problem is in NP .

Observation 3 A problem in SNP-C does not have a FPTAS unless P = NP .

Proof Assume that a problem Pi ∈ SNP −C has a FPTAS, APi. By our assumption,
there is a polynomial p over the integers such that Pip is NP -hard. Given an instance I
for Pip take ε = 1

2p(length(I)) and run APi on the pair I, ε. Since APi is a FPTAS for Pi, it
returns a solution, S, that satisfies

|val(I)− val(S)| ≤ εval(I) =
val(I)

2p(length(I))
≤ 1/2.

Since val(I) and val(S) are both integers we must have val(I) = val(S). On the other hand,
APi is polynomial in length(I) and 1/ε which in this case is bounded by a polynomial in
length(I). So, we have solved Pip, an NP -hard problem, in polynomial time, concluding
P = NP .

We know that there are problems in SNP-C (e.g., Vertex Cover, MAX-SAT, and most
other NP-complete languages). As a direct result, we get that when considering approxi-
mations, not all NP-Complete languages are equal.

4-1

2 Rounding Applied to Set Cover

Let E = {e1, . . . , en} be a set of elements, and let S = {S1, . . . , Sk} ⊆ 2E . A set C is called
a cover for E if for every e ∈ E there is a set S ∈ C, such that e ∈ S. The Set Cover
problem asks to find a cover C ⊆ S for E with minimal size.

Define the frequency of an element ei to be the number of sets Si ∈ S it is in. Denote
by f the frequency of the most frequent element.

Observation 4 The Vertex Cover problem is a special case of the Set Cover problem ,
where the elements are the edges of the graph, and Si is the set of edges that vertex i is
incident in. In this case f = 2 since each edge (u, v) belongs to exactly 2 Si’s: Su and Sv.

We will now present an f -approximation to the Set Cover problem. We first present Set
Cover as an program. Then,we relax the integer constraints and solve the relaxed problem
using linear programming. Finally, we convert the LP solution to an integer solution using
rounding and obtain and prove that it provides an f -approximation to the original problem.

For each Si ∈ S define a variable XSi . The integer program is as follows:

Minimize: ΣSi∈SXSi

Subject to:

• For each element e ∈ E: ΣSi|e∈Si
XSi ≥ 1

• For each Si: XSi ∈ {0, 1}

The first type of constraints requires that every item is covered, and the second type
of constraints are the integer constraints. Clearly, every solution to the Set Cover problem
is also a solution to the integer program (with the same value), and vice versa. Denote by
OPT the optimal solution. Unfortunately, since the SET-Cover problem is NP-Complete,
this makes integer programming NP-complete. To (partially) overcome this, we relax the
integer constraints and obtain the Linear Programming relaxation of the problem:

Minimize: ΣSi∈SXSi

Subject to:

• For each element e ∈ E: ΣSi|e∈Si
XSi ≥ 1

• For each Si: 0 ≤ XSi ≤ 1

Notice that we can solve the linear relaxation in polynomial time. Let OPT* be the
optimal solution of the LP Problem.

The next step of the algorithm takes the solution of the linear program (LP), and rounds
it back to an integer solution. In the current algorithm, the rounding is quite simple: take
each variable XSi , if XSi ≥ 1

f choose Si to be in the set cover (i.e., set XSi = 1 in the integer
program). Otherwise, Si is not in the set cover (XSi = 0).

Let COV ER = {Si|XSi=1} be the solution obtained. We now show that COVER is
indeed a valid set cover.

4-2

Claim 5 Cover is a set cover.

Proof Assume by contradiction that there exists e ∈ E, which is not covered by COVER.
Thus ∀Si:e∈SiXSi < 1

f (otherwise XSi would be in COVER and e would be in the set cover).
However, this cannot be the case since by the LP constraints ΣSi|e∈Si

XSi ≥ 1. Recall that
e is incident in at most f sets. Hence, there must be a set Si where the initial value in the
LP of XSi was at least 1

f . A contradiction.

The next claim shows that the algorithm indeed provides an approximation ratio of f .
We use the fact that OPT ∗ ≤ OPT (which is true because we have just added constraints
in the integer program comparing to the linear program).

Claim 6 |COV ER| ≤ |OPT ∗| · f
Proof The claim is true because the value of each XSi cannot increase by a factor of
more than f in the integer solution we construct.

3 Randomized Rounding Applied to MAX-SAT

Recall the MAX-SAT problem where we are given a SAT formula φ C1 ∧ ... ∧ Cm on
variables X1, ..., Xn. For an assignment A we denote by φ(A) the number of clauses that
are satisfied in A. As in our approximation algorithm for SET-COVER, we will round the
linear relaxation of the problem. However, this time we will use randomized rounding.

The integer program we present now is less straightforward than the previous one. For
each variable Xi in the formula, assign a variable yi. The meaning of yi = 1 is that
Xi = true assignment, and yi = 0 otherwise. For each clause Ci ∈ C, assign a variable zCi .
The meaning is that zCi = 1 if and only if Ci is satisfied. The integer program:

Maximize: ΣCizCi

Subject to:

• For each Ci: Σi∈C+
i
yi +

∑
i∈C−i

(1− yi) ≥ zCi

• For each clause Ci: Ci ∈ {0, 1}
• For each variable Xi: yi ∈ {0, 1}

Where C−
i is the set of variables in clause Ci that are negated, and C+

i is the set of
variables that are not negated. These constraint forces at least one literal to be true in order
for the clause Ci to be satisfied. Let OPT be the optimal solution. Similarly to before, the
LP relaxation is:

Maximize: ΣCizCi

Subject to:

• For each Ci: Σi∈C+
i
yi +

∑
i∈C−i

(1− yi) ≥ zCi

4-3

• For each clause Ci: 0 ≤ Ci ≤ 1

• For each variable Xi: 0 ≤ yi ≤ 1

Given the LP solution OPT∗ = (y∗, z∗), we set we assign Xi = true with probability
y∗i .

The following claim proves a lower bound on the probability that a clause Ci is satisfied
using the randomized rounding solution.

Claim 7 Let k be the maximum number of literals in some clause Ci. Let βk = 1−(
1− 1

k

)k.
The probability that Ci is satisfied by the randomized rounding procedure is at least βkz

∗
c .

Proof We prove the claim for the case that all literals in c are not negated. let c =
x1 ∨ . . . ∨ xk,

Pr(Ci is satisfied) = 1− Pr(Ci is not satisfied)
= 1− Pr(all Xi’s are false)
= 1−Πk

i=1 Pr(Xi is false)
= 1−Πk

i=1(1− y∗i), (since Pr(Xi = true) = y∗i)

≥ 1−
(∑k

i=1(1− y∗i)
k

)k

= 1−
(

1−
∑k

i=1 y∗i
k

)k

≥ 1−
(

1− z∗c
k

)k

, (from the LP constraints)

where the first inequality follows from arithmetic-geometric mean inequality: a1+...+ak
k ≥

k
√

a1 × . . .× ak.

Define g1(z) = 1− (
1− z

k

)k. Note that g1(z) is a concave function, and that g1(0) = 0
and g1(1) = βk. Define g2(z) = βkz. Note that g2(z) is a linear function also with g2(0) = 0
and g2(1) = βk. Therefore, for z ∈ [0, 1] g1(z) ≥ g2(z) = βkz. And since z∗ ∈ [0, 1] we have
g1(z∗) ≥ βkz

∗. Hence, Pr(Ci is satisfied) ≥ g1(z∗) ≥ βkz
∗.

Next, we prove a lower bound on the expected number of clauses satisfied by the ran-
domized rounding solution. Let TCi be an indicator random variable that gets the value of
1 if and only if the clause Ci is satisfied (and 0 otherwise). By the previous claim:

E [number of satisfied clauses] = E [ΣCiTCi]
= ΣCiE [TCi]
≥ ΣCiβkz

∗
Ci

,

= βkΣCiz
∗
Ci

= βkOPT ∗

4-4

Observe that as usual we have that OPT ≤ OPT ∗. Finally, we get that OPT ≥
E [number of satisfied clauses] ≥ βk · OPT . We conclude that in expectation we have a
1
βk

approximation. Note that βk is a decreasing function in k. Hence, as k increases, the
expected approximation becomes worse and in infinity limk→∞ βk = 1− 1

e .

Recall that the previous random algorithm for MAX-SAT, which was to set each variable
to true independently with probability 1/2 gave a better expected approximation as k
increased. A combined randomized algorithm, which chooses with probability 1/2 the either
first or the second algorithm could give a 3

4 -approximation algorithm, regardless of the value
of k.

4-5

