Theory of Computer Science to Msc Students, Spring 2007 Tirgul 6 Lecturer: Shahar Dobzinski Scribe: Shahar Dobzinski

1 The Problem

Consider the following problem: we are given a black box that represents a function $f : \{0,1\}^n \to \{0,1\}^n$. Each query $q \in \{0,1\}^n$ to the black box returns the value of f(q). We are given that there exists some $\vec{s} \in \{0,1\}^n$, $s \neq \vec{0}$, such that for each $\vec{x} \neq \vec{y} \in \{0,1\}^n$, we have that $f(\vec{x}) = f(\vec{y})$ iff $\vec{x} = \vec{y} \oplus \vec{s}$. How many queries to the black box do we need in order to find \vec{s} ?

It is an easy exercise to determine the exact number of queries that a deterministic algorithm must do. Suppose the algorithm makes t queries, that is, we know the values of f at $f(q_1), \ldots, f(q_t)$. If we have two different queries q_i , q_j such that $f(q_i) = f(q_j)$, then we clearly we have that $s = q_i \oplus q_j$. If for all two different queries q_i and q_j we have that $f(q_i) \neq f(q_j)$. Then clearly we have ruled out at most $\binom{n}{2}$ possible candidates for n. Since there are 2^{n-1} possible candidates for s in the first place, we get that any algorithm must make at least $O(\sqrt{2^n})$ queries in order to find s.

How many queries a *randomized* algorithm must make? Our goal in this class will be to develop the necessary machinery to answer this question. En route, we will learn a bit about game theory, linear programming, and randomization, and about the connection between them.

2 Yao's Principle and a Lower Bound

Theorem 1 (Yao's Principle) The worst-case performance of the best randomized algorithm is equal to the average performance of the best deterministic algorithm on the worst distribution of the inputs.

Yao's principle is a bit tricky to understand in a first reading, but is actually quite simple. We are interested in proving lower bounds on the performance of randomized algorithms. I.e., show that for *every* randomized algorithm A, there exists an input I such that the expected performance of A on I is at least t. Proving this directly is usually not an easy task. Yao suggests that instead, we will look at the worst distribution on the *inputs* that we can think of, and claim that every *deterministic* algorithm does not have, on average, a performance better than t on this set of inputs. By Yao's principle, this is a lower bound on the worst case performance of randomized algorithms.

2.1 An Application: A Lower Bound of $\Omega(\sqrt{2^n})$

Given Yao's principle, proving a lower bound for our problem is easy. First, notice that in order to completely define an instance for our problem we only have to specify a vector $\vec{s} \in \{0,1\}^n, s \neq \vec{0}$, and define the function f. Our distribution on the inputs will be construct a "random" f: select uniformly at random, a vector $\vec{s} \in \{0,1\}^n, s \neq \vec{0}$, select uniformly at random a set of 2^{n-1} values for f from $\{0,1\}^n$, and assign them uniformly at random to the elements in the domain of f (while making sure that f(x) = f(y) iff $x = y \oplus s$). We will see that on average the best deterministic algorithm must do at least $\Omega(\sqrt{2^n})$ in order to find \vec{s} . By Yao's principle this means that the best randomized algorithm must do at least $\Omega(\sqrt{2^n})$ queries to find \vec{s} , which is what we wanted in the first place.

Let us show that that on average the best deterministic algorithm must do at least $\Omega(\sqrt{2^n})$ in order to find \overrightarrow{s} on the defined distribution on the inputs. Suppose the algorithm is querying $x_1, ..., x_t$. Suppose that for each $i \neq j$, $f(x_i) \neq f(x_j)$. Observe that unless $t < \sqrt{2^n}$, we cannot know the value of \overrightarrow{s} . However, if for some $i \neq j$ we have that $f(x_i) = f(x_j)$, we can deduce the value of \overrightarrow{s} . What is the chance that for some $i \neq j$ we have that $f(x_i) = f(x_j)$? We will not do the exact calculation here, but it is quite easy to see that we need $\Omega(\sqrt{2^n})$ for the probability for a "collision" to be above $\frac{1}{2}$. The proof is similar to the proof of the birthday paradox¹.

Exercise: Show that this lower bound is tight. I.e., show that there exists a randomized algorithm that makes $O(\sqrt{2^n})$ queries and succeeds with probability which is at least $\frac{1}{2}$.

3 Yao's Principle via von-Neumann's Minimax Theorem

Let us now prove Yao's principle. We will do this by using game theory arguments. In a 2-players game we have two players, Alice and Bob. A strategy in the game is simply an action that each player can play. Alice has n strategies, and Bob has m strategies. When Alice plays the strategy i and bob plays j, the payoff of Alice is a_{ij} , and Bob's payoff is $-a_{ij}$. Let A be the set of Alice's strategies, and B be the set of Bob's strategies. Here we assume that both A and B are finite.

Suppose Alice knows that Bob is going to play j. Alice's best response for j is her strategy i such that $i = \arg \max_k a_{kj}$. Similarly, define Bob's best response for strategy i played by Alice. An equilibrium in pure strategies is a pair of strategies (i, j) such that i is Alice's best response for j, and j is Bob's best response for i.

Most games do not exhibit equilibrium in pure strategies. However, we might consider the case where the plays play *mixed* strategies, that is, a probability distribution over their (pure) strategies. If Alice plays the mixed strategy \vec{x} , and Bob plays \vec{y} , then Alice's payoff is $\sum_{i \in A, j \in B} x_i y_j a_{ij}$, and Bob's payoff is $-\sum_{i \in A, j \in B} x_i y_j a_{ij}$. We define the best response and equilibrium in mixed strategies in a similar manner to before. The following theorem tells

¹What is the probability that in a room with n people we will have two with the same birthday? If $n > \sqrt{365}$ then the probability is at least $\frac{1}{2}$.

us that an equilibrium in mixed strategies always exists:

Theorem 2 (von Neumann Minimax Theorem) Any two players zero-sum games has an equilibrium in mixed strategies (\vec{x}, \vec{y}) . Moreover, the payoffs are equal:

$$\max_{x} \min_{y} \sum_{i,j} x_i y_j a_{ij} = \min_{y} \max_{x} \sum_{i,j} x_i y_j a_{ij}$$

We will soon prove the theorem, but first here is how to derive Yao's principle. Fix an input size n. Define the following game: let Alice be the algorithms player: her strategies are all possible deterministic algorithms (observe that there is only a finite number of them). Let Bob be the inputs player: his strategies are all possible inputs (again, only a finite number). Let a_{ij} , the payoff of Alice from "playing" the algorithm i while bob is "playing" the input j be the performance of i on j. By the minimax theorem, there is an equilibrium point (\vec{x}, \vec{y}) such that the payoff of both players is t. Suppose that Bob is playing \vec{y} . Observe that for each pure strategy i we have that $\sum_j y_j a_{ij} \leq t$ (if there is a strategy the provides a better payoff then \vec{x} is not a best response for \vec{y}). In particular, each strategy played with non-zero probability in x obtains a payoff of exactly t. In other words, the best deterministic algorithm has an average performance of t on the worst probability distribution on the inputs. On the other hand, we can view \vec{x} as a randomized algorithm. Similarly, for every randomized algorithm there is an input on which the randomized algorithm obtains a payoff of t. This is what Yao's principle says.

Proof (of the minimax theorem) Alice faces the following problem:

Maximize: c

Subject to:

- $\forall j: \Sigma_i x_i a_{ij} \ge c$
- $\Sigma_i x_i = 1$
- $\forall i: x_i \ge 0$

Write this problem as:

Minimize: $\Sigma_i x_i$ Subject to:

- $\forall j: \Sigma_i x_i a_{ij} \ge 1$
- $\forall i: x_i \ge 0$

We claim that the optimum of the first LP is the inverse of the optimum of the second LP. To see this, take a feasible solution \vec{x} to the first LP with a value c and observe that $\frac{\vec{x}}{c}$ is a feasible solution to the second LP with a value of $\frac{1}{c}$. Similarly, take a feasible solution \vec{x} to the second LP with a value $\frac{1}{c}$ and observe that $c \cdot \vec{x}$ is a feasible solution to the first LP with a value of c.

Similarly, Bob faces the following problem:

Minimize: d

 $Subject \ to:$

- $\forall i: \Sigma_j y_j a_{ij} \leq d$
- $\Sigma_j y_j = 1$
- $\forall j: y_j \ge 0$

And as before the optimum of the following LP has a value that is inverse to the value of the previous LP:

Maximize: $\Sigma_j y_j$ Subject to:

- $\forall i: \Sigma_j y_j a_{ij} \leq 1$
- $\forall j: y_j \ge 0$

Now we observe that the second and the fourth LP's are the dual of each other. By the strong duality theorem, they both have the same optimum. The theorem follows. \blacksquare