
INTERRUPTS & POLLING

I. Real-time data input/output handling

A. Interrupts - An interrupt is an event that stops the current process in the CPU so that the
CPU can attend to the task needing completion because of the event.

 In data handling, an interrupt indicates data can be read or written to a device.

B. Polling - A polling-based program (non-interrupt driven) continuously polls or tests
whether or not data are ready to be received or transmitted. This scheme is less efficient
than the interrupt scheme.

II. Interrupts

A. Interrupts and the ‘6711

1. The general process:
Servicing an interrupt involves saving the context of the current process, completing
the interrupt task (interrupt service routine), restoring the registers and the process
context, and resuming the original process.

Program

Inst 1
Inst 2

:
:

Inst nInterrupt occurs here }

Save the contents of the
registers and the context of

the current process

Service the interrupt task

Restore the contents of the
registers and the context of

the current process

Resume the original process

Inst n+1
Inst n+2

:
:

This contains the Interrupt
Service Routine (ISR)

2. Types of interrupts on the ‘C6000 CPUs

RESET Highest priority
NMI
INT4
INT5
INT6
INT7
INT8
INT9
INT10
INT11
INT12
INT13
INT14
INT15 Lowest priority

The RESET signal resets the CPU and has the highest priority.

NMI, the nonmaskable interrupt, is the second–highest priority interrupt and is
generally used to alert the CPU of a serious hardware problem such as an imminent
power or memory failure. [A nonmaskable interrupt means that the interrupt cannot
be ignored or disabled by the system.]

INT4-INT15 are maskable interrupts which means that the processor can mask or
temporarily ignore the interrupt if it needs to so it can finish something else that it is
doing. These interrupts can be associated with external devices, on–chip peripherals
(timers), software control, or not be available. Have to look at the user manual for the
particular CPU.

3. There are eight registers in the ‘C6711 that control servicing interrupts.

Interrupt Control Registers
a. CSR (control status register): contains the global interrupt enable (GIE) bit and

other control/status bits
b. IER (interrupt enable register): enables/disables individual interrupts
c. IFR (interrupt flag register): displays status of interrupts – if interrupt is pending
d. ISR (interrupt set register): sets pending interrupts
e. ICR (interrupt clear register): clears pending interrupts
f. ISTP (interrupt service table pointer): locates an ISR
g. IRP (interrupt return pointer)
h. NRP (nonmaskable interrupt return pointer)

4. How a maskable interrupt is generated

An appropriate transition on an interrupt pin sets the pending status of the interrupt
within the interrupt flag register (IFR). If the interrupt is properly enabled, the CPU
begins processing the interrupt and redirecting program flow to the interrupt service
routine.

 What does properly enabled mean?

Assuming that a maskable interrupt does not occur during the delay slots of a branch
(this includes conditional branches that do not complete execution due to a false
condition), the following conditions must be met to process a maskable interrupt:

· The global interrupt enable bit (GIE) bit in the control status register (CSR) is set

to 1.

· The NMIE bit in the interrupt enable register (IER) is set to1.

· The corresponding interrupt enable (IE) bit in the IER is set to1.

· The corresponding interrupt occurs, which sets the corresponding bit in the IFR

to 1 and there are no higher priority interrupt flag (IF) bits set in the IFR.

5. How an interrupt is processed

When the CPU begins processing an interrupt, the interrupt service table (IST) is
used. The IST is a table of fetch packets that contain code for servici ng the interrupts.
The IST consists of 16 consecutive fetch packets. Each interrupt service fetch packet
(ISFP) contains eight instructions used to service the interrupt. One of the
instructions is a branch to the interrupt return pointer instruction (B IRP).

If the interrupt service routine for an interrupt is too large to fit in a single FP, a
branch to the location of additional interrupt service routine code is required.

The IST is located between 0h and 200h, = 16 fetch packets in the table, each fetch
packet = 8 instructions * 32 bits/instruction or = 32 bytes. 16*32=512=200h

*IST

ISFP
ISFP
ISFP
.
.
.
ISFP

*Instr 1
Instr 2
Instr 3
Instr 4
Instr 5
Instr 6
B IRP
NOP 5

Interrupt
Source

*Map Interrupt
4-15

Transition IFR =1
for INT X

*GIE = 1 (not masking)
*NMIE = 1 NMI enabled
*IE for INT = 1 enabled
No higher IFR = 1

Process
Interrupt

The reset FP must be at address 0. However, the FPs associated with the other
interrupts can be relocated. The relocatable address can be specified by using the
interrupt service table pointer (ISTP) register.

 * indicates the things we need to do as shown in the rest of this section

 6. Mapping interrupt sources to CPU interrupts

There are 16 interrupt sources, each with a selection number. The CPU, however,
has 12 interrupts available for use. So an interrupt source must be mapped to a CPU
interrupt. This is done by setting appropriate bits of the two memory mapped
Interrupt Multiplex Registers.

Interrupt Multiplexer High (INT10 - INT15) (address 0x19c0000)

IINNTTSS EELL11 55

IINNTTSS EELL11 44

IINNTTSS EELL1133

IINNTTSS EELL11 22

IINNTTSS EELL11 11

IINNTTSS EELL1100

Interrupt Multiplexer Low (INT4 - INT9) (address 0x19c0004)

Example of code to initialize INT12 with 0101b:

7. Set registers for GIE, NMIE, IE

Example to enable Individual Interrupts

EEnnaabbll ii nngg IInntteerr rruu pptt 77

IInn CC::

##iinncc lluuddee <<cc66xx ..hh>> //** IIEERR ddee ffiinnee dd hheerree **//
vvooiidd eennaa bbllee __IINN TT77 ((vvooiidd))
{{
 IIEERR == IIEERR || 00xx0088 00;;
}

In ASM:
__aassmm__sseett__ IINNTT77
 MMVVCC ..SS22 IIEERR,, BB00
 SSEETT ..LL22 BB00,,77,, 77,, BB00
 MMVVCC ..SS22 BB00,, IIEERR

8. Interrupt service table – this is the vectors file

Vectors_11.asm Vector file for interrupt-driven program using INT11

 .ref _c_int11 ;ISR used in C program

22

IINNTTSS EELL99
2222

IINNTTSS EELL88
1111

IINNTTSS EELL77
1111

IINNTTSS EELL66
55 88

IINNTTSS EELL55
00 33

IINNTTSS EELL44

MMVVKKLL 00xx1199cc0000 0000,, AA11
MMVVKKHH 00xx1199cc0000 0000,, AA11
LLDDWW **AA11,, AA00
CCLL RR AA00,, 1100,, 1133,, AA00
SSEETT AA00,, 1100,, 1100,, AA00
SSEETT AA00,, 1122,, 1122,, AA00
SSTTWW AA00,, **AA11

 .ref _c_int00 ;entry address for a C program
 .sect "vectors" ;section for vectors
RESET_RST: mvkl .S2 _c_int00,B0 ;lower 16 bits --> B0
 mvkh .S2 _c_int00,B0 ;upper 16 bits --> B0
 B .S2 B0 ;branch to entry address
 NOP ;NOPs for remainder of FP
 NOP ;to fill 0x20 Bytes
 NOP
 NOP
 NOP
NMI_RST: .loop 8
 NOP ;fill with 8 NOPs
 .endloop
RESV1: .loop 8
 NOP
 .endloop
RESV2: .loop 8
 NOP
 .endloop
INT4: .loop 8
 NOP
 .endloop
INT5: .loop 8
 NOP
 .endloop
INT6: .loop 8
 NOP
 .endloop
INT7: .loop 8
 NOP
 .endloop
INT8: .loop 8
 NOP
 .endloop
INT9: .loop 8
 NOP
 .endloop
INT10: .loop 8
 NOP
 .endloop

INT11: b _c_int11 ;branch to ISR
 .loop 7
 NOP
 .endloop

INT12: .loop 8
 NOP
 .endloop
INT13: .loop 8
 NOP
 .endloop
INT14: .loop 8
 NOP
 .endloop
INT15: .loop 8

 NOP
 .endloop

9. C Program with the ISR

interrupt void c_int11() //interrupt service routine

B. Example of Interrupts and the AD535 Codec

1. Files for use with the codec:

C6xdsk.cmd – sets up the memory map
C6x.h – defines some of the registers like IER, CSR in C: \ti\c6000\cgtools\include
C6x11dsk.h in C:\ti\c6000\dsk6x11\include – header file that defines addresses of
external memory interface, the serial ports, etc IML, IMH registers defined here
C6xinterrupts.h – contains init functions for interrupt . Sets up registers.
C6xdskinit.h – header file with the function prototypes
C6xdskinit.c – functions to initialize the DSK, the codec, serial ports, and for
input/output.

2. C6xinterrupts.h - excerpts

The interrupt selectors are defined

#define XINT0 0xC /* 01100b XINT0 McBSP 0 transmit interrupt */
#define RINT0 0xD /* 01101b RINT0 McBSP 0 receive interrupt */

* Interrupt Initialization Functions

/* Enable Interrupts Globally (set GIE bit in CSR = 1) */
void enableGlobalINT(void)
{
 CSR |= 0x1; /* bitwise OR */
}

/* Enable NMI (non-maskable interrupt); must be enabled
 * or no other interrupts can be recognized by 'C6000 CPU */
void enableNMI(void)
{
 IER = _set(IER, 1, 1); /* use an assembly intrinsinc */
}

/* Enable a specific interrupt;
 * (INTnumber = {4,5,6,...,15}) */
void enableSpecificINT(int INTnumber)
{
 IER = _set(IER, INTnumber, INTnumber);
}

The following does the mapping of interrupt source to CPU interrupt:

void config_Interrupt_Selector(int INTnumber, int INTsource)
{
 /* INTnumber = {4,5,6,...,15}
 INTsource = see #define list above
 */

3. C6xdskinit.h – header file with the function prototypes

//C6xdskinit.h Function prototypes for routines in c6xdskinit.c

void mcbsp0_init(); /* C callable library functions */
void mcbsp0_write(int);
int mcbsp0_read();
void TLC320AD535_Init();
void c6x_dsk_init();
void comm_poll();
void comm_intr();
int input_sample();
void output_sample(int);

4. C6xdskinit.c – functions to initialize the DSK, the codec, serial ports, and for

input/output.

void comm_intr() //for communication/init using interrupt
{
 polling = 0; //if interrupt-driven
 c6x_dsk_init(); //call init DSK function
 config_Interrupt_Selector(11, XINT0); //using transmit interrupt INT11 when data in
buffer to be transmitted
 enableSpecificINT(11); //for specific interrupt
 enableNMI(); //enable NMI
 enableGlobalINT(); //enable GIE for global interrupt
 mcbsp0_write(0); //write to SP0 – this will generate an
interrupt
}

 5. Other programs

Vectors program with a branch for interrupt 11

C program with the ISR

//sine8_intr.c Sine generation using 8 points, f=Fs/(# of points)
//Comm routines and support files included in C6xdskinit.c

short loop = 0;
short sin_table[8] = {0,707,1000,707,0,-707,-1000,-707}; //sine values
short amplitude = 10; //gain factor

interrupt void c_int11() //interrupt service routine
{
 output_sample(sin_table[loop]*amplitude); //output each sine value – continues
to generate interrupt
 if (loop < 7) ++loop; //increment index loop
 else loop = 0; //reinit index @ end of buffer
 return; //return from interrupt
}

void main()
{

 comm_intr(); //init DSK, codec, McBSP set-up for interrupt based
communications
 while(1); //infinite loop
}

AD535 codec samples/writes at 8kHz. An interrupt occurs every sample period
T=0.125ms. Within one period of the sine wave, 8 data values (0.125ms apart)
are output to generate a sinusoidal signal. The period of the output signal is
T=8*(0.125ms) = 1ms, frequency = 1kHz.

III. Polling

A. Register used for polling is the serial port control register (SPCR)

1. For reading, test bit 1 (second LSB) of the register to see if the port is ready to be
read. This is done by doing an AND of the SPCR with 0x2.

2. For writing, AND SPCR with 0x20000 to test bit 17, the transmit ready bit.

B. Example of Polling and the Codec

 1. c6xdskinit.c program

void comm_poll() //for communication/init using polling
{
 polling = 1; //if polling
 c6x_dsk_init(); //call init DSK function
}

int input_sample() //added for input
{
 return mcbsp0_read(); //read from McBSP0
}

int mcbsp0_read() //function for reading
{
 int temp;

 if (polling)
 {
 temp = *(unsigned volatile int *)McBSP0_SPCR & 0x2; //test to see if receive ready
register is enabled
 while (temp == 0)
 temp = *(unsigned volatile int *)McBSP0_SPCR & 0x2;
 }
 temp = *(unsigned volatile int *)McBSP0_DRR; //DRR = data read register
 return temp;
}

2. C program

//loop_poll.c Loop program using polling, output=input
//Comm routines and support files included in C6xdskinit.c

void main()

{
 int sample_data;

 comm_poll(); //init DSK, codec, McBSP
 while(1) //infinite loop
 {
 sample_data = input_sample(); //input sample
 output_sample(sample_data); //output sample
 }
}

IV. Code initialization

A. C programs

Programs start by going through a reset initialization code. This is in order to start at a
defined initial location. Upon power-up, the system goes to the reset location in memory,
which usually includes a branch to the beginning of code to be executed. This is
accomplished through the use of an assembly language program.

Before you can run a C/C++ program, you must create the C/C++ run-time environment.
The C/C++ boot routine performs this task using a function called c_int00. The run-time-
support source library, rts.src, contains the source to this routine.

To begin running the system, the c_int00 function can be branched to or called, but it is
usually vectored to by reset hardware. This is done in the vectors program which
essentially upon an ‘interrupt’ of reset branches to c_int00.

The c_int00 function performs the following tasks to initialize the environment:
1) It defines a section called .stack for the system stack and sets up the initial stack
pointers.
2) It initializes global variables.
3) It calls the function main to run the C/C++ program.

B. ASM programs

To initialize an assembly language program, you need the vectors program to branch to
the name of the routine of the main program upon reset. For example,

Vectorsa.asm
;vectors_dotp4a.asm Vector file for dotp4a project

 .ref init ;starting addr in init file
 .sect "vectors" ;in section vectors
rst: mvkl .s2 init,b0 ;init addr 16 LSB -->B0
 mvkh .s2 init,b0 ;init addr 16 MSB -->B0
 b b0 ;branch to addr init
 nop
 nop
 nop
 nop
 nop

