Image Processing (Computer Vision)
“Inverse Photography”

World

Photography

Images/Video

Images/Video

Processing

Computer Vision

Something

Stages in Computer Vision

- Physics: Image Formation (Light, Reflectance)
- Physics: Cameras: Optics (Lens), Sensors (CCD, CMOS)
- Image Processing: Coding (Transmission, Compression)
- Image Processing: Enhancement (Noise Cleaning, Colors)
- IP-CV: Feature Detection (Objects, Actions, Motion)
- Computer Vision: Scene recovery (3D, Reflectance)
- Computer Vision: Object Recognition
- Robotics: Control Action (autonomous driving)

Vision in Nature = Smart, Moving

- Only smart and moving organisms see!
 - Plants do not have eyes
- Visual recognition at early development
 - Babies recognize and track the mother very early
- Most of the brain is involved in vision processing

Application: Recognition

1984

National Geographics: “Afghan Girl”

2000

Panoramic Stereo Mosaics
(Last Exercise)

Teacher: Shmuel Peleg <peleg@cs.huji.ac.il>
Assistant: Yael Pritch <yaelpri@cs.huji.ac.il>
Ozer Horaa
Email: yaeshor@cs.huji.ac.il>
Textbook:
Gonzalez & Woods, Digital Image Processing (2nd Ed.),
Addison Wesley, 2002.
Jain, Pratt, Rosenfeld,....

Expected Work:
- 4 Written Exercises
- 4 individual computer exercises (MATLAB)

Grading:
- Exam: 60-70%; Exercises: 30-40%
Relevant Computer Vision Courses

- Image Processing (Peleg)
- Computer Vision Seminar (Sundays 10-12)
- Computer Graphics (Sun 12-14, Wed 16-18, Lischinski)
- Introduction to Machine Learning (Mon 10-12, Tue 12-14, Shashua)
- Computer Vision (Werman)
- Image Sequence Analysis (Peleg)
- Issues in Computational & Biological Vision (Weinshall)
- Human Vision: A Computation Approach (Weiss)

Image Formation

- Light is emitted by light source
- Light is reflected from objects
- Reflected light is sensed by eye or by camera

\[I = L \cdot r \]

The Human Eye (2.1)

World to Retina Projection

The Retina

Colors - Electromagnetic Radiation

120 \times 10^6 \text{ Rods (B/W)}

7 \times 10^6 \text{ Cones (Color)}

\approx 10^4 \text{ Nerves}

- Visible Light Range: 350-780 nm
- Maximum Sun Energy: 450 nm
- Best Atmospheric Transmittance: Visible Range
Mach Bands (1)

Spatial Sensitivity

Response Curve

Mach Bands (2)

Visual Illusions

Dual Interpretations

What is That?

Image Digitization (2.3)

• Transforming the 3D world into 2D image
 – Perspective Projection (Optics)
• Sampling the Image Plane
 – Finite number of Pixels
• Quantizing the color/gray-level
 – Finite number of colors

• Transforming the 3D world into 2D image
 – Perspective Projection (Optics)
• Sampling the Image Plane
 – Finite number of Pixels
• Quantizing the color/gray-level
 – Finite number of colors
Perspective Projection (2.5.2)

- Transforming the 3D world into 2D image
 - Continuous Perspective Projection
 - optics

\[x = \frac{f \cdot X}{Z}, \quad y = \frac{f \cdot Y}{Z} \]

Image Sampling

- Sampling the Image Plane
 - Finite number of Pixels

Color/Grey-level Quantization

- Quantizing the color/grayscale
 - Finite number of colors

Digital Pictures

- A Matrix of numbers (B/W)
- A Matrix of triplets (RGB Color, etc.)

Color Spaces (4.6)

Y - Luminance	\(Y \)	0.299	0.587	0.114
##############	---	---	---	---
\(I \)	0.596	-0.275	-0.321	
\(Q \)	0.212	-0.523	0.311	

CIE Chromaticity Diagram (1931)
The Histogram

- Frequency counting of gray levels

![Frequency counting of gray levels](image)

- In continuous intensities:
 a continuous probability distribution \(p(g) \)

Histogram Equalization

- Equal usage of all gray levels

![Equal usage of all gray levels](image)

- Normalizing to range 0..1

\[s_i = \frac{1}{n} \sum_{j=1}^{n} n_i \]

Histogram Equalization (cont.)

N Pixels, Range 0..K-1

\[n_i = \# \text{ pixels at } i \]

Normalized Cumulative Occurrence:

\[s_i = \frac{1}{n} \sum_{j=1}^{n} n_i \]

- For every original level \(j \):
 - Change its gray level to \(S_j \cdot (K - 1) \)
 - Stretch gray levels back to [0..K-1]
Examples for Equalization

Adaptive Histogram Equalization

- Different regions in a single image
 - Example: Coin on white paper
- Poor result for Histogram Equalization
 - Do the coins and paper separately
 - How to segment?
- Compute histogram in local regions around each pixel