Adaptive Histogram Equalization

- Different regions in a single image
 - Example: Coin on white paper
- Poor result for Histogram Equalization
 - Do the coins and paper separately
 - How to segment?
- Compute histogram in local regions around each pixel

Adaptive Equalization

- For each pixel
 - Compute Histogram in Neighborhood
 - Transform only the center pixel
 - Go to next pixel

Color Quantization

- 24 bits/pixel - 8 bits/color - 2563 Colors
- 8 bits/pixel - 256 colors
 - 3-3-2 bits for R-G-B
 - General Quantization - Look Up Table (LUT)
 - LUT can be for RGB or for YUV

Quantization Error

- If pixel \(p \) with color \((r,g,b) \) is coded by \(k \), a possible quantization error for \(p \) is:
 \[
 E_p^2 = (r - R_k)^2 + (g - G_k)^2 + (b - B_k)^2
 \]
- The total error introduced by a LUT is:
 \[
 E^2 = \sum_p E_p^2
 \]
- Unknowns: \((r,g,b) \rightarrow k \)

Quantization

- Map the continuous intensities to \{\(q_0, \ldots, q_{k-1} \)\}
 - Borders of segments: \(z_0, z_1, z_2, \ldots, z_k \)
 - Represent each segment \([z_{i-1}, z_i]\) by intensity \(q_i \)
- Uniform Quantization:
 \[
 q_i = \frac{z_i + z_{i+1}}{2} \\
 z_{i+1} - z_i = (z_k - z_0) / k
 \]
- Prior Mappings (e.g. Gamma Correction)

Optimal Quantization (6.5.1)

- Minimize the error:
 \[
 \sum_{i=0}^{k-1} \int (q_i - z)^2 p(z) dz
 \]
- Solution (Prove!):
 \[
 q_i = \frac{\int_{z_i}^{z_{i+1}} p(z) dz}{\int_{z_i}^{z_{i+1}} p(z) dz}
 \\
 z_i = \frac{q_{i-1} + q_i}{2}
 \]
Operation with LUT (4.2)

- **Stretch**
 \[
 \begin{bmatrix}
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 0 & 0 & 0 & 2 & 4 & 6 & 7 & 7 \\
 \end{bmatrix}
 \]

- **Threshold**
 \[
 \begin{bmatrix}
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 0 & 0 & 0 & 0 & 7 & 7 & 7 & 7 \\
 \end{bmatrix}
 \]

- **Negative**
 \[
 \begin{bmatrix}
 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
 7 & 6 & 5 & 4 & 3 & 2 & 1 & 0 \\
 \end{bmatrix}
 \]

1-D Discrete Convolution

\[
 h(i) = (f \ast g)(i) = \sum_{k=1}^{n} f(k)g(i-k)
\]

\[
 f = (0 0 1 0 0) \quad g = (0 0 1 \ -1 \ 0)
\]

\[
 h(6) = \sum_{k=1}^{5} f(k) \cdot g(6-k) = f(3) \cdot g(3) = 1
\]

\[
 h(7) = \sum_{k=1}^{5} f(k) \cdot g(7-k) = f(3) \cdot g(4) = -1
\]

2D Discrete Convolution

\[
 h = f \ast g
\]

\[
 h(i,j) = \sum_{k=1}^{n} \sum_{l=1}^{m} f(k,l)g(i-k,j-l)
\]

Question: What is the complexity of convolution?

Convolutions: Smoothing

- **Q**: What is the average gray level after convolution?
 - **Smoothing**
 - \[
 \begin{bmatrix}
 1 & 1 & 1 \\
 1 & 1 & 1 \\
 1 & 1 & 1 \\
 \end{bmatrix}
 \]
 - \[
 \begin{bmatrix}
 1 & 2 & 1 \\
 2 & 4 & 2 \\
 1 & 2 & 1 \\
 \end{bmatrix}
 \]

- **Original Image**
- **Corrupted Image**
- **Filtered Image**

Convolutions: Edge-Detection

- **Q**: What is the average gray level after convolution?
 - **Edge Detection**
 - \[
 \begin{bmatrix}
 1 & 0 & -1 \\
 1 & 0 & -1 \\
 1 & 0 & -1 \\
 \end{bmatrix}
 \]
 - \[
 \begin{bmatrix}
 -1 & 1 \\
 -1 & 1 \\
 \end{bmatrix}
 \]

- **Original Blood Image**
- **Edge Map**