Tirgul 5
Image Pyramids

Pyramids

\[N^2 + \frac{1}{4} N^2 + \frac{1}{16} N^2 + \cdots = \frac{1}{3} N^2 \]

Efficient Visual Search

Motion Computation

Browsing in image Databases
Applications for Pyramids

- Detection and Search
- Motion Computations
- Browsing in Image Databases

Image Resizing

Shrink:
1. Blur
 - Convolve with a 3*3, or 5*5 or...
2. Sub-sample
 - Select every 2nd pixel in every 2nd row

Expand:
1. Zero Padding
2. Blur

Blur Kernel for Pyramids

Weights: (a, b, c, b, a)

Conditions:
- $c > b > a$
- $2a + 2b + c = 1$
- $c + 2a = 2b$

Commonly Used - Binomial Coefficients

1 1 1
1 4 6 4 1
1 6 15 20 15 6 1

Blur & Sub-sample *(Reduce)*

Blur & Sub-sample
Zero-Pad & Blur

Boundaries

Mirror on last pixel. \(? = 2 \)
Mirror after last pixel. \(? = 0 \)
Duplicate last pixel. \(? = 0 \)
Gaussian Pyramid

\[G_0 \rightarrow \text{Reduce}(G_{n-1}) \]
\[G_1 \rightarrow \text{Reduce}(G_1) \]
\[G_2 \rightarrow \text{Reduce}(G_2) \]
\[G_3 \rightarrow \text{Reduce}(G_3) \]

2D Picture: Reduce Rows, Reduce Columns

Laplacian Pyramid

\[L_0 \rightarrow G_0 \]
\[L_1 \rightarrow \text{Expand}(G_1) \]
\[L_2 \rightarrow \text{Expand}(G_2) \]
\[L_3 \rightarrow \text{Expand}(G_3) \]
\[L_4 \rightarrow \text{Expand}(G_4) \]

\[L_n + L_{n-1} = \text{Expand}(L_n) + L_{n-1} = \]
\[= \text{Expand}(G_n) + (G_{n-1} - \text{Expand}(G_n)) = G_{n-1} \]

Pyramid Compression

- Build a Laplacian Pyramid
- Quantize pyramid values to 3-5 values
- Compress using Entropy Compression
 - (Huffman, Lempel-Ziv)
- Reconstruct normally
- Next Generation: Wavelet Compression

Optimal Quantization (reminder)

\[q_i = \frac{\int z \cdot p(z)dz}{\int p(z)dz} \]
\[z_i = q_{i-1} + \frac{q_i}{2} \]
Pyramid Compression

Multiresolution Spline

- Given two images A and B
- Construct Laplacian Pyramid L_a and L_b
- Create a third Laplacian Pyramid L_c where for each level l
 \[L_c(i, j) = \begin{cases}
 & L_a(i, j) + L_b(i, j) / 2 & \text{if } i < \text{width}/2 \\
 & (L_a(i, j) + L_b(i, j)) / 2 & \text{if } i = \text{width}/2 \\
 & L_b(i, j) & \text{if } i > \text{width}/2
 \end{cases} \]
- Sum all levels L_c in to get the blended image

Pyramid Blending Example 1

Picture Merging with Spline

- For every Row:
 \[C(i) = H_f(i-x)A(i) + H_r(i-x)B(i) \]

Image Merging with Laplacian Pyramids

- Given two images A and B, and a mask M
- Construct Laplacian Pyramids L_a and L_b
- Construct a Gaussian Pyramid G_m
- Create a third Laplacian Pyramid L_c where for each level l
 \[L_c(i, j) = G_m(i, j) L_a(i, j) + (1 - G_m(i, j)) L_b(i, j) \]
- Sum all levels L_c in to get the blended image

Pyramid Blending Arbitrary Shape
Pyramid Blending Example 2