Colorization Using Optimization

Anat Levin Dani Lischinski Yair Weiss

School of Computer Science and Engineering
The Hebrew University of Jerusalem, Israel

Motivation

- Colorizing black and white movies and TV shows

Colorization: a computer-assisted process of adding color to a monochrome image or movie. (Invented by Wilson Markle, 1970)

Motivation

- Colorizing black and white movies and TV shows

- Recoloring color images for special effects
Typical Colorization Process

- Delineate region boundary

Images from:
"Yet Another Colorization Tutorial"
http://www.worth1000.com/tutorial.asp
?sid=161018

Typical Colorization Process

- Delineate region boundary
- Choose region color from palette.

Images from:
"Yet Another Colorization Tutorial"
http://www.worth1000.com/tutorial.asp
?sid=161018

Video Colorization Process

- Delineate region boundary
- Choose region color from palette.
- Track regions across video frames

Images from:
"Yet Another Colorization Tutorial"
http://www.worth1000.com/tutorial.asp
?sid=161018
Colorization by Analogy

A : A'

B : B'

Hertzmann et al. 2001, Welsh et al. 2002

Colorization Process Discussion

- Time consuming and labor intensive
 - Fine boundaries.
 - Failures in tracking.

Colorization by Analogy

A : A'

B : B'

Hertzmann et al. 2001, Welsh et al. 2002

Colorization by Analogy - Discussion

- Indirect artistic control
- No spatial continuity constraint

Our approach

Artist scribbles desired colors inside regions
Our approach

Colors are propagated to all pixels
"Nearby pixels with similar intensities should have the same color"

Minimizing cost function

Minimize:

\[J (U) = \sum_{r} \left(U (r) - \sum_{s \in N (r)} w_{rs} U (s) \right)^2 \]

Subject to labeling constraints

Since cost is quadratic, minimum can be found by solving sparse system of linear equations.

Affinity Functions

\[W_{rs} \propto e^{-\frac{(Y (r) - Y (s))^2}{\sigma^2}} \]

\(\sigma_r \) proportional to local variance

Affinity Functions in Space-Time

\[W_{rs} \propto e^{-\frac{(Y (r) - Y (s))^2}{2 \sigma^2}} \]

Propagation using Optimization

\[Y \Rightarrow U, V \]

Intensity channel Color channels

"Neighboring pixels with similar intensities should have similar colors"
Coloring Stills

Color Interpolation

Coloring Stills

Colorization Challenges

Original

Colorized

Coloring Stills
Recoloring

Affinity between pixels – based on intensity AND color similarities.

c.f. “Poisson image editing” Perez et al. SIGGRAPH 2003
Common Concept
Manipulating the Space Time Volume

Dynamic Mosaics
Video Editing, Non-chronological Time

Making a Long Video Short:
Dynamic Video Synopsis

Shmuel Peleg
Dani Liscinski
Alex Rav-Acha
Yael Pritch

Dynamic Mosaics
• Cancel Camera Motion
• Preserve Scene Motion
• Non Chronological Time

Summary
• Interface: User scribbles color on a small number of pixels
• Colors propagate in space-time volume respecting intensity boundaries
• Convincing colorization with a small amount of user effort

Future Work:
• Import image segmentation advantages: affinity functions, optimization techniques.
• Alternative color spaces, propagating hue and saturation differently

Code & examples available:
www.cs.huji.ac.il/~yweiss/Colorization/
Preprocessing: Constructing an aligned Space-Time Volume

Alignment with Parallax and Moving Objects.

Dynamic Mosaics
Motion Parallax
- Cancel Camera Motion
- Preserve Scene Motion
- Non Chronological Time

Stereo Mosaicing

Generate Output Video
Sweeping “Evolving Time Front” surface

Time is not chronological any more

Stationary Camera
Panning Camera

Evolving Time Fronts

Mapping each TF to a new frame

Generate Output Video
Sweeping “Evolving Time Front” surface

Time is not chronological any more
Some Related Work

The Space Time Volume Representation [Baker & Bolts, UCV'99]

The technique is similar to the “Video Cubes” [Cohen at el, Microsoft TR], later used for “photomontage” [Siggraph]

- Aligning the video
- Create new videos (not only a single image)

Many existing methods which were applied on static scenes [X-slits, Zomet at el., PAMI 2003]

Example: Demolition
(KingDome – Seattle)

Example: Racing

Spatio-Temporal Magnifying Glass
1D Elastic Magnification

- Source image
- Destination
- Focus Area (Magnified)
- Margins (Compressed)
- Outside Glass (Normal)

Elastic Magnification in Context
(Carpendale et al., ACM User Interface 2004)

Spatio-temporal magnification

- Dunks Video
- Iguazu Falls

Note the bright expanding rings: they are caused by photography flashes in the source video.
Summary

Mapping from an input video to an output video using the following steps:
Generation of an Aligned Space-Time Volume
Sweeping an “Evolving Time Front” surface in the Space-Time Volume
Possible Effects:
 • Dynamic Panoramic Mosaics
 • Ability to selectively control time progress
 • Spatio-Temporal Video Warping