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Ray Tracing
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Ray Tracing

aRay Tracing kills two birds with one stone:
`Solves the Hidden Surface Removal problem
`Evaluates an improved global illumination model

⌧shadows
⌧ideal specular reflections
⌧ideal specular refractions

`Enables direct rendering of a large variety of geometric 
primitives

aBook: A. Glassner, An Introduction to Ray Tracing
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Backward Tracing
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Reflected, Transmitted and 
Shadow rays
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The Illumination Model

aRemember the local illumination model 
we saw earlier?

aFirst, let’s add shadows into the model:
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Illumination Model (cont’d)

aAdd in light arriving from the mirror-
reflected direction
aAdd in light arriving from the ideal 

refracted direction (Snell’s Law)
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Refraction
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Refraction Geometry
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And the result is...
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The RT Algorithm
aFor each pixel (x,y) in the image, generate the 

corresponding ray in 3D.
aImage(x,y) := TraceRay(ray)
aTraceRay(ray)
`compute nearest ray-surface intersection
`if none found, return background color
`compute direct illumination
`compute illumination arriving from reflected direction
`compute illumination arriving from refracted direction
`combine illumination components using the shading 

model
`return resulting color 14

The RT Algorithm

aDirect illumination: test the visibility of 
each source by shooting a shadow ray 
towards it. Only sources which are found 
visible are summed in the shading model.

aReflected/refracted illumination: a 
recursive call to TraceRay with the 
reflected/refracted ray as argument.
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The depth of reflection
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Ray-Surface Intersection

aImplicit surfaces:
`Use a parametric representation for the ray:

`Substitute into the implicit equation:

`Solve the resulting equation

`Examples: plane, sphere
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Ray Plane intersection
Implicit Formulation

aFind ‘t’ such that f(x,y,z) = 0
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Ray Sphere intersection

aFind ‘t’ such that f(x,y,z) = 0
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Ray-Surface Intersection

aParametric surfaces:
aSeveral approaches:
`Tessellation
`Subdivision
`Implicitization
`Other numerical methods (involve solving a 

system of two or three nonlinear equations)
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Ray-Plane Intersection
Explicit formulation

a Find t, u,v such that:

a Linear system 3 equations, 3 unknowns
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Advantages of Ray Tracing 
Algorithm

aComputes global illuminations effects:
`Shadows
`Reflections
`Refractions

aComputes visibility and shading at once
aConsistent and easy implementation
aCan be extended easily
aCan be parallelized
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Disadvantages of Ray Tracing

aSlow
aMemory bound – all objects must be kept 

in memory
aDoes not compute all global illuminations 

effects:
`Caustics
`Color Bleeding
`More…
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Accelerating Ray Tracing

aFour main groups of acceleration techniques:
`Parallelization, specialized hardware
`Reducing the total number of rays that are traced

⌧Adaptive recursion depth control
`Reducing the average cost of intersecting a ray with a 

scene:
⌧Faster intersection calculations
⌧Fewer intersection calculations

`Using generalized rays
⌧beams
⌧cones
⌧pencils
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Parallel/Distributed RT

aTwo main approaches:
`Each processor is in charge of tracing a 

subset of the rays. Requires a shared 
memory architecture, replication of the scene 
database, or transmission of objects between 
processors on demand.
`Each processor is in charge of a subset of 

the scene (either in terms of space, or in 
terms of objects). Requires processors to 
transmit rays among themselves.
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The Ray Tree 
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Accelerating Ray Tracing

aFaster intersection calculations:
`Object-dependent optimizations
`Bounding volumes

aFewer intersection calculations:
`Bounding volume hierarchy
`Spatial subdivisions:

⌧Uniform grids
⌧Octrees
⌧BSP-trees
⌧Hybrids

`Directional techniques
⌧The light buffer
⌧Ray classification
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Bounding Volumes

a Idea: associate with each object a simple bounding 
volume. If a ray misses the bounding volume, it also 
misses the object contained therein.

a Common bounding volumes:
`spheres
`bounding boxes
`bounding slabs

a Effective for additional applications:
`Clipping acceleration
`Collision detection

a Note: bounding volumes offer no asymptotic 
improvement!
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Bounding Boxes
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Bounding Volumes

30

Bounding Volume 
Hierarchy

aIntroduced by James Clark (SGI, Netscape) in 
1976 for efficient view- frustum culling.

Procedure Procedure IntersectBVH(rayIntersectBVH(ray, node), node)
beginbegin

ifif IsLeaf(nodeIsLeaf(node) ) thenthen
Intersect(ray, node.object)Intersect(ray, node.object)

else ifelse if IntersectBV(ray,node.boundingVolumeIntersectBV(ray,node.boundingVolume) ) 
thenthen

foreachforeach child of node dochild of node do
IntersectBVH(rayIntersectBVH(ray, child), child)

endforendfor
endifendif

endend
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Spatial Subdivision

aUniform spatial subdivision:
`The space containing the scene is subdivided into a 

uniform grid of cubes “voxels”.
`Each voxel stores a list of all objects at least partially 

contained in it.in
`Given a ray, voxels are traversed using a 3D variant 

of the 2D line drawing algorithms.
`At each voxel the ray is tested for intersection with 

the primitives stored therein
`Once an intersection has been found, there is no 

need to continue to other voxels.
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Uniform Subdivision
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Adaptive Spatial 
Subdivision

aDisadvantages of uniform subdivision:
`requires a lot of space
`traversal of empty regions of space can be 

slow
`not suitable for “teapot in a stadium” scenes

aSolution: use a hierarchical adaptive 
spatial subdivision data structure
`octrees
`BSP- trees

aGiven a ray, perform a depth-first 
traversal of the tree Again can stop once
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Octrees

35

Octree traversal
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Directional Techniques

aLight buffer: accelerates shadow rays.
`Discretize the space of directions around 

each light source using the direction cube
`In each cell of the cube store a sorted list 

of objects visible from the light source 
through that cell
`Given a shadow ray locate the appropriate 

cell of the direction cube and test the ray 
with the objects on its list



7

37

Directional Techniques

aRay classification (Arvo and Kirk 87):
`Rays in 3D have 5 degrees of freedom: (x,y,z,θ,φ)
`Rays coherence: rays belonging to the same small 5D 

neighborhood are likely to intersect the same set of 
objects.

`Partition the 5D space of rays into a collection of 5D 
hypercubes, each containing a list of objects.

`Given a ray, find the smallest containing 5D 
hypercube, and test the ray against the objects on 
the list.

`For efficiency, the hypercubes are arranged in a 
hierarchy: a 5D analog of the 3D octree. This data 
structure is constructed in a lazy fashion.


