
1

1

Ray Tracing

2

Ray Tracing

aRay Tracing kills two birds with one stone:
`Solves the Hidden Surface Removal problem
`Evaluates an improved global illumination model

⌧shadows
⌧ideal specular reflections
⌧ideal specular refractions

`Enables direct rendering of a large variety of geometric
primitives

aBook: A. Glassner, An Introduction to Ray Tracing

3

Backward Tracing

4

Reflected, Transmitted and
Shadow rays

5

The Illumination Model

aRemember the local illumination model
we saw earlier?

aFirst, let’s add shadows into the model:

() ()
1

i i

n
r a a att p d i s i

i
I I k f I k N L k R V

=

 = + ⋅ + ⋅ ∑

() ()[]∑
=

⋅+⋅+=
1i

n
isidpattiaar VRkLNkIfSkII

ii

6

Illumination Model (cont’d)

aAdd in light arriving from the mirror-
reflected direction
aAdd in light arriving from the ideal

refracted direction (Snell’s Law)

ss Ik

tt Ik

() ()[]
ttss

i

n
isidpattiaar

IkIk

VRkLNkIfSkII
ii

++

⋅+⋅+= ∑
=1

2

7

Refraction

8

Refraction Geometry

9

And the result is...

10

11 12

3

13

The RT Algorithm
aFor each pixel (x,y) in the image, generate the

corresponding ray in 3D.
aImage(x,y) := TraceRay(ray)
aTraceRay(ray)
`compute nearest ray-surface intersection
`if none found, return background color
`compute direct illumination
`compute illumination arriving from reflected direction
`compute illumination arriving from refracted direction
`combine illumination components using the shading

model
`return resulting color 14

The RT Algorithm

aDirect illumination: test the visibility of
each source by shooting a shadow ray
towards it. Only sources which are found
visible are summed in the shading model.

aReflected/refracted illumination: a
recursive call to TraceRay with the
reflected/refracted ray as argument.

15

The depth of reflection

16

Ray-Surface Intersection

aImplicit surfaces:
`Use a parametric representation for the ray:

`Substitute into the implicit equation:

`Solve the resulting equation

`Examples: plane, sphere

0),,(=zyxf

()
()
()
()

x x x

y y y

z z z

R t O tD
R t O tD
R t O tD
R t O tD

= +
= +
= +
= +

0),,(=+++ zzyyxx tDOtDOtDOf

17

Ray Plane intersection
Implicit Formulation

aFind ‘t’ such that f(x,y,z) = 0

zzz

yyy

xxx

tDOtR
tDOtR
tDOtR
tDOtR

+=
+=
+=
+=

)(
)(
)(
)(O

D
N

(, ,) 0

() () ()
() ()

x y z

x x x y y y z z z

x x y y z z x x y y z z

x x y y z z

x x y y z z

f x y z N x N y N z d
N O tD N O tD N O tD d
N D N D N D t d N O N O N O

d N O N O N O
t

N D N D N D

= + + + =

+ + + + + = −

+ + = − + + +

+ + +
= −

+ +

18

Ray Sphere intersection

aFind ‘t’ such that f(x,y,z) = 0
()R t O tD= + O

D2 2 2

2 2 2

(, ,) 1
() () () 1

...
x x y y z z

f x y z x y z
O tD O tD O tD

= + + −

+ + + + + =

C

R

4

19

Ray-Surface Intersection

aParametric surfaces:
aSeveral approaches:
`Tessellation
`Subdivision
`Implicitization
`Other numerical methods (involve solving a

system of two or three nonlinear equations)
















=

),(
),(
),(

),(
vuz
vuy
vux

vuS

20

Ray-Plane Intersection
Explicit formulation

a Find t, u,v such that:

a Linear system 3 equations, 3 unknowns

(,) (,) (,)
(,) (,) (,)
(,) (,) (,)

x x u v o

y y u v o

z z u v o

O tD x u v x u v x u v x
O tD y u v u y u v v y u v y
O tD z u v z u v z u v z

+         
         + = = + +         
         +         

21

Advantages of Ray Tracing
Algorithm

aComputes global illuminations effects:
`Shadows
`Reflections
`Refractions

aComputes visibility and shading at once
aConsistent and easy implementation
aCan be extended easily
aCan be parallelized

22

Disadvantages of Ray Tracing

aSlow
aMemory bound – all objects must be kept

in memory
aDoes not compute all global illuminations

effects:
`Caustics
`Color Bleeding
`More…

23

Accelerating Ray Tracing

aFour main groups of acceleration techniques:
`Parallelization, specialized hardware
`Reducing the total number of rays that are traced

⌧Adaptive recursion depth control
`Reducing the average cost of intersecting a ray with a

scene:
⌧Faster intersection calculations
⌧Fewer intersection calculations

`Using generalized rays
⌧beams
⌧cones
⌧pencils

24

Parallel/Distributed RT

aTwo main approaches:
`Each processor is in charge of tracing a

subset of the rays. Requires a shared
memory architecture, replication of the scene
database, or transmission of objects between
processors on demand.
`Each processor is in charge of a subset of

the scene (either in terms of space, or in
terms of objects). Requires processors to
transmit rays among themselves.

5

25

The Ray Tree

26

Accelerating Ray Tracing

aFaster intersection calculations:
`Object-dependent optimizations
`Bounding volumes

aFewer intersection calculations:
`Bounding volume hierarchy
`Spatial subdivisions:

⌧Uniform grids
⌧Octrees
⌧BSP-trees
⌧Hybrids

`Directional techniques
⌧The light buffer
⌧Ray classification

27

Bounding Volumes

a Idea: associate with each object a simple bounding
volume. If a ray misses the bounding volume, it also
misses the object contained therein.

a Common bounding volumes:
`spheres
`bounding boxes
`bounding slabs

a Effective for additional applications:
`Clipping acceleration
`Collision detection

a Note: bounding volumes offer no asymptotic
improvement!

28

Bounding Boxes

29

Bounding Volumes

30

Bounding Volume
Hierarchy

aIntroduced by James Clark (SGI, Netscape) in
1976 for efficient view- frustum culling.

Procedure Procedure IntersectBVH(rayIntersectBVH(ray, node), node)
beginbegin

ifif IsLeaf(nodeIsLeaf(node)) thenthen
Intersect(ray, node.object)Intersect(ray, node.object)

else ifelse if IntersectBV(ray,node.boundingVolumeIntersectBV(ray,node.boundingVolume))
thenthen

foreachforeach child of node dochild of node do
IntersectBVH(rayIntersectBVH(ray, child), child)

endforendfor
endifendif

endend

6

31

Spatial Subdivision

aUniform spatial subdivision:
`The space containing the scene is subdivided into a

uniform grid of cubes “voxels”.
`Each voxel stores a list of all objects at least partially

contained in it.in
`Given a ray, voxels are traversed using a 3D variant

of the 2D line drawing algorithms.
`At each voxel the ray is tested for intersection with

the primitives stored therein
`Once an intersection has been found, there is no

need to continue to other voxels.

32

Uniform Subdivision

33

Adaptive Spatial
Subdivision

aDisadvantages of uniform subdivision:
`requires a lot of space
`traversal of empty regions of space can be

slow
`not suitable for “teapot in a stadium” scenes

aSolution: use a hierarchical adaptive
spatial subdivision data structure
`octrees
`BSP- trees

aGiven a ray, perform a depth-first
traversal of the tree Again can stop once

34

Octrees

35

Octree traversal

36

Directional Techniques

aLight buffer: accelerates shadow rays.
`Discretize the space of directions around

each light source using the direction cube
`In each cell of the cube store a sorted list

of objects visible from the light source
through that cell
`Given a shadow ray locate the appropriate

cell of the direction cube and test the ray
with the objects on its list

7

37

Directional Techniques

aRay classification (Arvo and Kirk 87):
`Rays in 3D have 5 degrees of freedom: (x,y,z,θ,φ)
`Rays coherence: rays belonging to the same small 5D

neighborhood are likely to intersect the same set of
objects.

`Partition the 5D space of rays into a collection of 5D
hypercubes, each containing a list of objects.

`Given a ray, find the smallest containing 5D
hypercube, and test the ray against the objects on
the list.

`For efficiency, the hypercubes are arranged in a
hierarchy: a 5D analog of the 3D octree. This data
structure is constructed in a lazy fashion.

