

Ray Tracing

\mathscr{H} Ray Tracing kills two birds with one stone:
\triangle Solves the Hidden Surface Removal problem
\triangle Evaluates an improved global illumination model shadows
©ideal specular reflections
ideal specular refractions
\triangle Enables direct rendering of a large variety of geometric primitives
Book: A. Glassner, An Introduction to Ray Tracing

Reflected, Transmitted and Shadow rays

The Illumination Model

\&Remember the local illumination model we saw earlier?

$$
I_{r}=I_{a} k_{a}+\sum_{i=1}^{\ell} f_{a t_{i}} I_{p_{i}}\left[k_{d}\left(N \cdot L_{i}\right)+k_{s}\left(R_{i} \cdot V\right)^{n}\right]
$$

First, let's add shadows into the model:
$I_{r}=I_{a} k_{a}+\sum_{i=1}^{\ell} S_{i} f_{a t t_{i}} I_{p_{i}}\left[k_{d}\left(N \cdot L_{i}\right)+k_{s}\left(R_{i} \cdot V\right)^{n}\right]$

Illumination Model (cont'd)

${ }_{\text {SAdd }}$ in light arriving from the mirrorreflected direction $k_{s} I_{s}$
\&Add in light arriving from the ideal refracted direction (Snell's Law) $k_{t} I_{t}$

$$
\begin{aligned}
I_{r}= & I_{a} k_{a}+\sum_{i=1}^{\ell} S_{i} f_{a t t_{i}} I_{p_{i}}\left[k_{d}\left(N \cdot L_{i}\right)+k_{s}\left(R_{i} \cdot V\right)^{n}\right] \\
& +k_{s} I_{s}+k_{t} I_{t}
\end{aligned}
$$

Refraction

Refraction Geometry

Fig. 9. Refraction causes the ruler to appear bent in a glass of water.

$\frac{\sin \theta_{1}}{\sin \theta_{2}}=\eta_{21}=\frac{\eta_{2}}{\eta_{1}}, \mathbf{T}=\alpha \mathrm{I}+\beta \mathbf{N}$
Fig. 10. The geometry of transmission.

11

The RT Algorithm

\mathscr{H} For each pixel (x, y) in the image, generate the corresponding ray in 3D.
\&Image $(\mathrm{x}, \mathrm{y}):=$ TraceRay(ray)
\&TraceRay(ray)
compute nearest ray-surface intersection
if none found, return background color compute direct illumination compute illumination arriving from reflected direction compute illumination arriving from refracted direction combine illumination components using the shading model
©return resulting color

The depth of reflection

The RT Algorithm

Direct illumination: test the visibility of each source by shooting a shadow ray towards it. Only sources which are found visible are summed in the shading model.

Reflected/refracted illumination: a recursive call to TraceRay with the reflected/refracted ray as argument.

Ray-Surface Intersection

Implicit surfaces: $f(x, y, z)=0$
\triangle Use a parametric representation for the ray:
$R(t)=O+t D$
$R_{x}(t)=O_{x}+t D$
$R(t)=0+t D$
$R_{y}(t)=O_{y}+t D$
Substitute into the implicit equation:
$f\left(O_{x}+t D_{x}, O_{y}+t D_{y}, O_{z}+t D_{z}\right)=0$
\triangle Solve the resulting equation
\triangle Examples: plane, sphere

Ray Plane intersection Implicit Formulation

Find ' t ' such that $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$
$R(t)=O+t D$
$R_{x}(t)=O_{x}+t D_{x}$ $R_{y}(t)=O_{y}+t D_{y}$ $R_{2}(t)=O_{z}+t D_{z}$ $f(x, y, z)=N_{x} x+N_{y} y+N_{z} z+d=0$ $N_{x}\left(O_{x}+t D_{x}\right)+N_{y}\left(O_{y}+t D_{y}\right)+N_{z}\left(O_{z}+t D_{z}\right)=-d$ $\left(N_{x} D_{x}+N_{y} D_{y}+N_{z} D_{z}\right) t=-\left(d+N_{x} O_{x}+N_{y} O_{y}+N_{z} O_{z}\right)$ $t=-\frac{d+N_{x} O_{x}+N_{y} O_{y}+N_{z} O_{z}}{N_{x} D_{x}+N_{y} D_{y}+N_{z} D_{z}}$

Ray Sphere intersection

Find ' t ' such that $\mathrm{f}(\mathrm{x}, \mathrm{y}, \mathrm{z})=0$

Ray-Surface Intersection

Parametric surfaces:
Several approaches:

$$
S(u, v)=\left[\begin{array}{l}
x(u, v) \\
y(u, v) \\
z(u, v)
\end{array}\right]
$$

\triangle Tessellation

Subdivision
Implicitization
\triangle Other numerical methods (involve solving a system of two or three nonlinear equations)

Ray-Plane Intersection

Explicit formulation

Find t, u, v such that:

$$
\left[\begin{array}{l}
O_{x}+t D_{x} \\
O_{y}+t D_{y} \\
O_{z}+t D_{z}
\end{array}\right]=\left[\begin{array}{l}
x(u, v) \\
y(u, v) \\
z(u, v)
\end{array}\right]=u\left[\begin{array}{l}
x_{u}(u, v) \\
y_{u}(u, v) \\
z_{u}(u, v)
\end{array}\right]+v\left[\begin{array}{l}
x_{v}(u, v) \\
y_{v}(u, v) \\
z_{v}(u, v)
\end{array}\right]+\left[\begin{array}{l}
x_{o} \\
y_{o} \\
z_{o}
\end{array}\right]
$$

\mathscr{H} Linear system 3 equations, 3 unknowns

Advantages of Ray Tracing

Algorithm

Computes global illuminations effects:
\triangle Shadows
\triangle Reflections
Refractions
Computes visibility and shading at once
Consistent and easy implementation
Can be extended easily
Can be parallelized

Disadvantages of Ray Tracing

Slow
Memory bound - all objects must be kept in memory
Does not compute all global illuminations effects:
®Caustics
\triangle Color Bleeding
©More...

Accelerating Ray Tracing

Four main groups of acceleration techniques:
\triangle Parallelization, specialized hardware
\triangle Reducing the total number of rays that are traced Adaptive recursion depth control
\triangle Reducing the average cost of intersecting a ray with a scene:
\square Faster intersection calculations
\square Fewer intersection calculations
\triangle Using generalized rays
区eams
\square cones
区pencils

Parallel/Distributed RT

\mathscr{H} Two main approaches:
\triangle Each processor is in charge of tracing a subset of the rays. Requires a shared memory architecture, replication of the scene database, or transmission of objects between processors on demand.
\triangle Each processor is in charge of a subset of the scene (either in terms of space, or in terms of objects). Requires processors to transmit rays among themselves.

The Ray Tree

Bounding Volumes

\& Idea: associate with each object a simple bounding volume. If a ray misses the bounding volume, it also misses the object contained therein.
\& Common bounding volumes:

spheres

\triangle bounding boxes
bounding slabs
\& Effective for additional applications:
Clipping acceleration
Collision detection
\& Note: bounding volumes offer no asymptotic improvement!

Accelerating Ray Tracing

Faster intersection calculations:
Object-dependent optimizations
Bounding volumes
Fewer intersection calculations:
\triangle Bounding volume hierarchy
\triangle Spatial subdivisions: Uniform grids
Octrees
BSP-trees
Hybrids
\triangle Directional techniques
$ख$ The light buffer Ray classification

Bounding Boxes

Bounding Volume Hierarchy

Introduced by James Clark (SGI, Netscape) in 1976 for efficient view frustum culling.

```
Procedure IntersectBVH(ray, node)
begin
        if IsLeaf(node) then
            Intersect(ray, node.object)
        else if IntersectBV(ray, node.boundingVolume)
        then
            foreach child of node do
                IntersectBVH(ray, child)
            endfor
        endif
end
```


Spatial Subdivision

Uniform spatial subdivision:
Δ The space containing the scene is subdivided into a uniform grid of cubes "voxels".
Each voxel stores a list of all objects at least partially contained in it.in
\triangle Given a ray, voxels are traversed using a 3D variant of the 2D line drawing algorithms.
\triangle At each voxel the ray is tested for intersection with the primitives stored therein
\triangle Once an intersection has been found, there is no need to continue to other voxels.

Adaptive Spatial Subdivision

Disadvantages of uniform subdivision:
\triangle requires a lot of space
\triangle traversal of empty regions of space can be slow
©not suitable for "teapot in a stadium" scenes
Solution: use a hierarchical adaptive spatial subdivision data structure

®octrees

\triangle BSP trees
Given a ray, perform a depth-first
travaral of thetran Sanin con oton ${ }^{33}$

Octree traversal

Uniform Subdivision

Directional Techniques

Light buffer: accelerates shadow rays. Discretize the space of directions around each light source using the direction cube
\triangle In each cell of the cube store a sorted list of objects visible from the light source through that cell
\triangle Given a shadow ray locate the appropriate cell of the direction cube and test the ray with the objects on its list

Directional Techniques

${ }_{H}$ Ray classification (Arvo and Kirk 87):
\triangle Rays in 3D have 5 degrees of freedom: (x, y, z, θ, ϕ) Rays coherence: rays belonging to the same small 5D neighborhood are likely to intersect the same set of objects.
Partition the 5D space of rays into a collection of 5D hypercubes, each containing a list of objects.
Given a ray, find the smallest containing 5D hypercube, and test the ray against the objects on the list.
For efficiency, the hypercubes are arranged in a hierarchy: a 5D analog of the 3D octree. This data structure is constructed in a lazy fashion.

