
1

1

Ray Tracing

2

Ray Tracing

aRay Tracing kills two birds with one stone:
`Solves the Hidden Surface Removal problem
`Evaluates an improved global illumination model

⌧shadows
⌧ideal specular reflections
⌧ideal specular refractions

`Enables direct rendering of a large variety of geometric
primitives

aBook: A. Glassner, An Introduction to Ray Tracing

2

3

Backward Tracing

4

Reflected, Transmitted and
Shadow rays

3

5

The Illumination Model

aRemember the local illumination model
we saw earlier?

aFirst, let’s add shadows into the model:

() ()
1

i i

n
r a a att p d i s i

i
I I k f I k N L k R V

=

 = + ⋅ + ⋅ ∑

() ()[]∑
=

⋅+⋅+=
1i

n
isidpattiaar VRkLNkIfSkII

ii

6

Illumination Model (cont’d)

aAdd in light arriving from the mirror-
reflected direction
aAdd in light arriving from the ideal

refracted direction (Snell’s Law)

ss Ik

tt Ik

() ()[]
ttss

i

n
isidpattiaar

IkIk

VRkLNkIfSkII
ii

++

⋅+⋅+= ∑
=1

4

7

Refraction

8

Refraction Geometry

5

9

And the result is...

10

6

11

12

7

13

The RT Algorithm
aFor each pixel (x,y) in the image, generate the

corresponding ray in 3D.
aImage(x,y) := TraceRay(ray)
aTraceRay(ray)
`compute nearest ray-surface intersection
`if none found, return background color
`compute direct illumination
`compute illumination arriving from reflected direction
`compute illumination arriving from refracted direction
`combine illumination components using the shading

model
`return resulting color

14

The RT Algorithm

aDirect illumination: test the visibility of
each source by shooting a shadow ray
towards it. Only sources which are found
visible are summed in the shading model.

aReflected/refracted illumination: a
recursive call to TraceRay with the
reflected/refracted ray as argument.

8

15

The depth of reflection

16

Ray-Surface Intersection

aImplicit surfaces:
`Use a parametric representation for the ray:

`Substitute into the implicit equation:

`Solve the resulting equation

`Examples: plane, sphere

0),,(=zyxf

()
()
()
()

x x x

y y y

z z z

R t O tD
R t O tD
R t O tD
R t O tD

= +
= +
= +
= +

0),,(=+++ zzyyxx tDOtDOtDOf

9

17

Ray Plane intersection
Implicit Formulation

aFind ‘t’ such that f(x,y,z) = 0

zzz

yyy

xxx

tDOtR
tDOtR
tDOtR
tDOtR

+=
+=
+=
+=

)(
)(
)(
)(O

D
N

(, ,) 0

() () ()

() ()

x y z

x x x y y y z z z

x x y y z z x x y y z z

x x y y z z

x x y y z z

f x y z N x N y N z d
N O tD N O tD N O tD d
N D N D N D t d N O N O N O

d N O N O N O
t

N D N D N D

= + + + =

+ + + + + = −

+ + = − + + +

+ + +
= −

+ +

18

Ray Sphere intersection

aFind ‘t’ such that f(x,y,z) = 0
()R t O tD= + O

D2 2 2

2 2 2

(, ,) 1
() () () 1

...
x x y y z z

f x y z x y z
O tD O tD O tD

= + + −

+ + + + + =

C

R

10

19

Ray-Surface Intersection

aParametric surfaces:
aSeveral approaches:
`Tessellation
`Subdivision
`Implicitization
`Other numerical methods (involve solving a

system of two or three nonlinear equations)
















=

),(
),(
),(

),(
vuz
vuy
vux

vuS

20

Ray-Plane Intersection
Explicit formulation

a Find t, u,v such that:

a Linear system 3 equations, 3 unknowns

(,) (,) (,)
(,) (,) (,)
(,) (,) (,)

x x u v o

y y u v o

z z u v o

O tD x u v x u v x u v x
O tD y u v u y u v v y u v y
O tD z u v z u v z u v z

+         
         + = = + +         
         +         

11

21

Advantages of Ray Tracing
Algorithm

aComputes global illuminations effects:
`Shadows
`Reflections
`Refractions

aComputes visibility and shading at once
aConsistent and easy implementation
aCan be extended easily
aCan be parallelized

22

Disadvantages of Ray Tracing

aSlow
aMemory bound – all objects must be kept

in memory
aDoes not compute all global illuminations

effects:
`Caustics
`Color Bleeding
`More…

12

23

Accelerating Ray Tracing

aFour main groups of acceleration techniques:
`Parallelization, specialized hardware
`Reducing the total number of rays that are traced

⌧Adaptive recursion depth control
`Reducing the average cost of intersecting a ray with a

scene:
⌧Faster intersection calculations
⌧Fewer intersection calculations

`Using generalized rays
⌧beams
⌧cones
⌧pencils

24

Parallel/Distributed RT

aTwo main approaches:
`Each processor is in charge of tracing a

subset of the rays. Requires a shared
memory architecture, replication of the scene
database, or transmission of objects between
processors on demand.
`Each processor is in charge of a subset of

the scene (either in terms of space, or in
terms of objects). Requires processors to
transmit rays among themselves.

13

25

The Ray Tree

26

Accelerating Ray Tracing

aFaster intersection calculations:
`Object-dependent optimizations
`Bounding volumes

aFewer intersection calculations:
`Bounding volume hierarchy
`Spatial subdivisions:

⌧Uniform grids
⌧Octrees
⌧BSP-trees
⌧Hybrids

`Directional techniques
⌧The light buffer
⌧Ray classification

14

27

Bounding Volumes

a Idea: associate with each object a simple bounding
volume. If a ray misses the bounding volume, it also
misses the object contained therein.

a Common bounding volumes:
`spheres
`bounding boxes
`bounding slabs

a Effective for additional applications:
`Clipping acceleration
`Collision detection

a Note: bounding volumes offer no asymptotic
improvement!

28

Bounding Boxes

15

29

Bounding Volumes

30

Bounding Volume
Hierarchy

aIntroduced by James Clark (SGI, Netscape) in
1976 for efficient view-frustum culling.

Procedure Procedure IntersectBVH(rayIntersectBVH(ray, node), node)
beginbegin

ifif IsLeaf(nodeIsLeaf(node)) thenthen
Intersect(ray, node.object)Intersect(ray, node.object)

else ifelse if IntersectBV(ray,node.boundingVolumeIntersectBV(ray,node.boundingVolume))
thenthen

foreachforeach child of node dochild of node do
IntersectBVH(rayIntersectBVH(ray, child), child)

endforendfor
endifendif

endend

16

31

Spatial Subdivision

aUniform spatial subdivision:
`The space containing the scene is subdivided into a

uniform grid of cubes “voxels”.
`Each voxel stores a list of all objects at least partially

contained in it.in
`Given a ray, voxels are traversed using a 3D variant

of the 2D line drawing algorithms.
`At each voxel the ray is tested for intersection with

the primitives stored therein
`Once an intersection has been found, there is no

need to continue to other voxels.

32

Uniform Subdivision

17

33

Adaptive Spatial
Subdivision

aDisadvantages of uniform subdivision:
`requires a lot of space
`traversal of empty regions of space can be

slow
`not suitable for “teapot in a stadium” scenes

aSolution: use a hierarchical adaptive
spatial subdivision data structure
`octrees
`BSP-trees

aGiven a ray, perform a depth-first
traversal of the tree Again can stop once

34

Octrees

18

35

Octree traversal

36

Directional Techniques

aLight buffer: accelerates shadow rays.
`Discretize the space of directions around

each light source using the direction cube
`In each cell of the cube store a sorted list

of objects visible from the light source
through that cell
`Given a shadow ray locate the appropriate

cell of the direction cube and test the ray
with the objects on its list

19

37

Directional Techniques

aRay classification (Arvo and Kirk 87):
`Rays in 3D have 5 degrees of freedom: (x,y,z,θ,φ)
`Rays coherence: rays belonging to the same small 5D

neighborhood are likely to intersect the same set of
objects.

`Partition the 5D space of rays into a collection of 5D
hypercubes, each containing a list of objects.

`Given a ray, find the smallest containing 5D
hypercube, and test the ray against the objects on
the list.

`For efficiency, the hypercubes are arranged in a
hierarchy: a 5D analog of the 3D octree. This data
structure is constructed in a lazy fashion.

