
1

1

Computer Graphics Course
2005

Polygon Filling
(Rasterization)

2

Point-in-polygon test

How do we tell if a point is inside or
outside a polygon?

2

3

Point-in-polygon test
Odd-even rule: count the number of
times a line from the point of interest to
a point known to be outside crosses the
edges of the polygon.

Odd = inside
Even = outside

4

PointPoint--inin--polygon testpolygon test
NonNon--zero winding number rule:zero winding number rule: Consider the Consider the
number of times the polygon edges wind number of times the polygon edges wind
around the point of interest (counteraround the point of interest (counter--
clockwise direction).clockwise direction).

Define edge direction to be counterDefine edge direction to be counter--clockwise.clockwise.
Define edge normal as the clockwise normal.Define edge normal as the clockwise normal.
Choose a Choose a ““farfar”” point, outside polygon, and cast a point, outside polygon, and cast a
ray from the point of interest to that point.ray from the point of interest to that point.
Calculate a winding number: for each edge crossed:Calculate a winding number: for each edge crossed:

If If angle(ray, normal) < 90angle(ray, normal) < 90 increase counter by 1.increase counter by 1.
If If angle(ray, normal) > 90angle(ray, normal) > 90 decrease the count by decrease the count by
1.1.

If the winding number is nonIf the winding number is non--zero the point is zero the point is
inside the polygon.inside the polygon.

3

5

Point-in-polygon test

Which interior corresponds to which rule?

6

Point-in-polygon test

Which interior corresponds to which rule?

Odd-even ruleWinding number

4

7

Scan-Line Polygon Fill

Two scan-line spans:
from x=2 through 4
from x=9 through 13

The scanline “span”:
A span is a group of adjacent pixels on a
scanline, that are considered to be interior
to the polygon.

8

Polygon Fill-
Scan-line algorithm

For each scan-line crossing the polygon:
find intersections with polygon edges
sort from left to right
fill interior spans.

5

9

Polygon Fill-
Scan-line algorithm steps

Find the intersection of the scan line with all
edges of the polygon.
Sort the intersections by increasing x
coordinate.
Fill all pixels between pairs of intersections
that lie interior to the polygon, using the odd-
parity rule:

Parity is initially even, and each intersection
inverse the parity bit.
Draw when parity is odd.
Do not draw when parity is even.

10

Scan-Line Polygon Fill:
span extrema

.

(a)

MidPoint algorithm edge pixels

Problem: draws pixels outside
polygon

(b)

Only Interior pixels

6

11

Polygon Fill - scanline algorithm
Special cases

Q: Given an intersection with an arbitrary
fractional x value, which pixel on either side
of intersection is interior ?

A: If we approach a fractional intersection to
the right and are inside polygon, we round
down the x coordinate to be inside polygon;
and vice versa.

12

Polygon Fill - scanline algorithm
Special cases

Q: How do we deal with intersection at integer
pixel coordinate (think of 2 polygons sharing
such pixel - to whom does it belong) ?

A:
Leftmost pixels of a span are considered to be
interior.
Rightmost pixels, are considered to be exterior.

7

13

Polygon Fill - scanline algorithm
Special cases

Q: How do we deal with intersection at integer pixel
coordinate which is also a shared vertex ?
A: We will count only the Ymin vertex of an edge in
the parity calculation, but not the Ymax.

Q: How do we deal with intersection at integer pixel
coordinate where the vertices also define a
horizontal line ?
A: We ignore horizontal edges in intersection
calculations.

14

Which edges will be drawn in the polygon
below?

8

15

Scan-Line Coherence

Scan-line coherence means that the interior spans
corresponding to two adjacent scan lines are usually
very similar.
We use scan-line coherence in order to compute
these spans incrementally, rather than intersecting
each scan line with the polygon.
In particular, if a polygon edge intersects a scan line
y=k at xk, the intersection with y=k+1 is

m
xx kk

1
1 +=+ m
xx kk

1
1 +=+

(where m is the slope of the edge).

16

Scan-Line Algorithm-
Data structures

Edge Table (ET):
An entry for each scan line crossing the polygon.
Each entry contains a list of all polygon edges whose
lower end (Ymin) is on this scan line.
For each edge we store the following information:
xmin, ymax, and slope (dx, dy or m).
The edges in each list are sorted from left to right
(according to their xmin).

9

17

Scan-Line Algorithm-
Data structures

Edge-Table Example:

18

Scan-Line Algorithm-
Data structures

Active Edge Table (AET):
Maintain an Active Edge list that contains only the list
of edges crossing the current scan line.
Therefore, the edges held by the AET are updated
each new scanline.
In this table each edge element holds the following
information: Ymax, slope, (all taken from the ET), and
the x coordinate of intersection point between the
edge and current scanline (this should be updated for
each new scanline).
The edges in this table are sorted by the x coordinate
of the intersection points (left to right).

10

19

Scan-Line Algorithm
ET+AET Example (AET is given for scanlines 9 & 10):

AET:

ET:

Scanlines

9:

10:

Note that this AET example is general, and don’t
handle special cases (such as the intersection
with edge DC, that according to our rules should
be taken as x=12 rather than 13).

20

Scan-Line Algorithm steps

Initialize the ET.
Set ‘y’ (the current scanline) to the first non-empty
entry in the ET.
Repeat until the AET and ET are empty:

Move new edges from ET to AET: take all edges in entry y of
ET (recall that these edges has ymin == y).
Update the x coordinate (intersection point with current
scnline) of each edge in the AET.
Re-sort the AET list, if necessary.
Fill interior spans according to the edges on the AET list.
Remove from AET those edges with ymax == y (will not
intersect the next scanline).
Increment y by 1 (move to next scanline).

11

21

Scan-Line Algorithm

Exercise:
Run the algorithm
to fill the polygon
below:

1 2 3 4 5 6 7 8

1
2
3
4
5
6

1 2 3 4 5 6 7 8

1
2
3
4
5
6

Result:

