Computer Graphics Course
2005

Polygon Filling
(Rasterization)

Point-in-polygon test

F$gHow do we tell if a point is inside or

outside a polygon?

Point-in-polygon test
#0dd-even rule: count the number of
times a line from the point of interest to
a point known to be outside crosses the
edges of the polygon.
[Al0dd = inside
[AlEven = outside

Point-in-polygon test

¢ Non-zero winding number rule: Consider the
number of times the polygon edges wind
around the point of interest (counter-
clockwise direction).
Define edge direction to be counter-clockwise.
Define edge normal as the clockwise normal.
Choose a “far" point, outside polygon, and cast a
ray from the point of interest to that point.
Calculate a winding number: for each edge crossed:
o If angle(ray, normal) < 90 -> increase counter by 1.
. ff angle(ray, normal) > 90 -> decrease the count by

& If the winding number is non-zero the point is
inside the polygon.

Point-in-polygon test

Which interior corresponds to which rule?

A\ AN

Point-in-polygon test

Which interior corresponds to which rule?

A\ AN

Winding number Odd-even rule

Scan-Line Polygon Fill

3 The scanline “span”:
A span is a group of adjacent pixels on a
scanline, that are considered to be interior

to the polygon. 2t

10

N & & @

& Two scan-line spans: 2 4 6 B8 10 12 14

from X=2 through 4 Fig. 3.22 Polygon and scan line 8
from x=9 through 13 ,

Polygon Fill-
Scan-line algorithm

3 For each scan-line crossing the polygon:
[AIfind intersections with polygon edges
[Alsort from left to right
[Afill interior spans.

Polygon Fill-
Scan-line algorithm steps

¥ Find the intersection of the scan line with all
edges of the polygon.

FSort the intersections by increasing x
coordinate.

FFill all pixels between pairs of intersections
that lie interior to the polygon, using the odd-
parity rule:

[AParity is initially even, and each intersection
inverse the parity bit.

[AIDraw when parity is odd.
[AIDo not draw when parity is even. 9

Scan-Line Polygon Fill:
span extrema

@ ()
MidPoint algorithm edge pixels Only Interior pixels

Problem: draws pixels outside
polygon
10

Polygon Fill - scanline algorithm
Special cases

#Q: Given an intersection with an arbitrary
fractional x value, which pixel on either side
of intersection is interior ?

B A: If we approach a fractional intersection to
the right and are inside polygon, we round
down the x coordinate to be inside polygon;
and vice versa.

11

Polygon Fill - scanline algorithm
Special cases

#Q: How do we deal with intersection at integer
pixel coordinate (think of 2 polygons sharing
such pixel - to whom does it belong) ?

FA:
Leftmost pixels of a span are considered to be
interior.
Rightmost pixels, are considered to be exterior.

12

Polygon Fill - scanline algorithm
Special cases

#Q: How do we deal with intersection at integer pixel
coordinate which is also a shared vertex ?
A: We will count only the Ymin vertex of an edge in
the parity calculation, but not the Ymax.

#Q: How do we deal with intersection at integer pixel
coordinate where the vertices also define a
horizontal line ?

A: We ignore horizontal edges in intersection
calculations.

13

3 Which edges will be drawn in the polygon

below?

J c D

A B
Fig. 3.24 Horizontal edges in a polygon.

14

Scan-Line Coherence

Scan-line coherence means that the interior spans
corresponding to two adjacent scan lines are usually
very similar.

& We use scan-line coherence in order to compute
these spans incrementally, rather than intersecting
each scan line with the polygon.

In particular, if a polygon edge intersects a scan line
y=k at x,, the intersection with y=k+1 is

X+l = Xk +%

(where m is the slope of the edge).
15

Scan-Line Algorithm-
Data structures

#Edge Table (ET):
[&IAn entry for each scan line crossing the polygon.

[AlEach entry contains a list of all polygon edges whose
lower end (Ymin) is on this scan line.

[AFor each edge we store the following information:
Xminr Ymaxe @Nd slope (dx, dy or m).

[AIThe edges in each list are sorted from left to right
(according to their X,;,).

16

Scan-Line Algorithm-
Data structures

F$Edge-Table Example:

12d
g O
obr aw
sl T g i ol
[\=/ i o .
e s
PR /C > g7|| RNy E2k VT A LI
1l P Eo| 4 oo
2L ;\-_\%// B jr_:';%_"“ ’r: .
] | &)] | L , T STl
2 4 8 8 10 12 14 Jl‘_""'q“ff[_l &

AB

Ymax
Xmin

m

17

Scan-Line Algorithm-
Data structures

Active Edge Table (AET):

¥ Maintain an Active Edge list that contains only the list
of edges crossing the current scan line.

Therefore, the edges held by the AET are updated
each new scanline.

3 In this table each edge element holds the following
information: Ymax, slope, (all taken from the ET), and
the x coordinate of intersection point between the
edge and current scanline (this should be updated for
each new scanline).

3 The edges in this table are sorted by the x coordinate
of the intersection points (left to right).

18

Scan-Line Algorithm
& ET+AET Example (AET is given for scanlines 9 & 10):

4 AET:
- Scanlines

c 9 .
Sy gy oy g) .
4

2 4 6 8 W 121

.f:' . OF ' = co .
10: (- ETT- (HH
] Fig. 3.28 Actwe-sdge table for polygon of Fig 3 22 (al Scankine . (b} Scan hne 10
N Mote DE's 5 coordnate o (b} has been rounded up for that left edge |
ET: § Ti-ﬁ—"!il;ﬁ ",-'-—-'n[rrlltili . .

Bel _— Note that this AET example is general, and don’t
TR --_:}"‘—- -ﬂ‘%lflﬂ handle special cases (such as the intersection

N I with edge DC, that according to our rules should

: l—‘—|—'ﬂ5113-'§]ﬁﬂll be taken as x=12 rather than 13).

19

Scan-Line Algorithm steps

38 Initialize the ET.

3 Set 'y’ (the current scanline) to the first non-empty
entry in the ET.

3 Repeat until the AET and ET are empty:

IMove new edges from ET to AET: take all edges in entry y of
ET (recall that these edges has ymin == y).

RlUpdate the x coordinate (intersection point with current
scnline) of each edge in the AET.

[IRe-sort the AET list, if necessary.
EIFill interior spans according to the edges on the AET list.

EIRemove from AET those edges with ymax ==y (will not
intersect the next scanline).

BIncrement y by 1 (move to next scanline). 20

Scan-Line Algorithm

Exercise:
Run the algorithm
to fill the polygon
below:

— N W A n

— N W A n &

Result:

1 23 45 6 7 8

21

