

Parameterization of closed genus-0 triangle meshes

Linear system of equations

$$
\begin{aligned}
& \boldsymbol{v}_{i}-\sum_{j \in N(i)} \lambda_{i j} v_{j}=0, \quad i=1,2, \ldots, n \\
& \boldsymbol{v}_{i}-\sum_{j \in N(i) \backslash B} \lambda_{i j} \boldsymbol{v}_{j}=\sum_{k \in N(i) \cap B} \lambda_{i k} \boldsymbol{v}_{k}, i=1,2, \ldots, n \\
& \\
& \left.\begin{array}{ccccc}
1 & & -\lambda_{1, j_{1}} & & -\lambda_{1, j_{d 1}} \\
& 1 & & \\
& & & \\
& -\lambda_{4, j_{1}} & & \ddots & \\
& -\lambda_{n, j_{5}} & & 1
\end{array}\right)\left(\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right)=\left(\begin{array}{c}
\sigma_{1} \\
\sigma_{2} \\
\sigma_{n}
\end{array}\right)
\end{aligned}
$$

Linear system of equations

- A unique solution always exists
- Important: the solution is legal (bijective)
- The system is sparse, thus fast numerical solution is possible
- Numerical problems (because the vertices in the middle might get very dense...)

Inner vertices

- We constrain each inner vertex to be a weighted average of its neighbors:

$$
\begin{gathered}
\boldsymbol{v}_{i}=\sum_{j \in N(i)} \lambda_{i j} \boldsymbol{v}_{j}, i=1,2, \ldots, n \\
\lambda_{i j}=\left\{\begin{array}{cc}
0 & i, j \text { are not neighbors } \\
>0 & (i, j) \in E \text { (neighbours) }
\end{array}\right. \\
\sum_{j \in N(i)} \lambda_{i j}=1
\end{gathered}
$$

Shape preserving weights

To compute $\lambda_{l}, \ldots, \lambda_{5}$, a local embedding of the patch is found:

1) $\left\|\mathbf{p}_{i}-\mathbf{p}\right\|=\left\|\mathbf{x}_{i}-\mathbf{x}\right\|$
2) $\operatorname{angle}\left(\mathbf{p}_{i}, \mathbf{p}, \mathbf{p}_{i+1}\right)=\left(2 \pi / \Sigma \theta_{i}\right) \operatorname{angle}\left(\boldsymbol{v}_{i}, \boldsymbol{v}, \boldsymbol{v}_{i+1}\right)$
$\exists \lambda_{i},\left\{\begin{array}{l}\mathbf{p}=\Sigma \lambda_{i} \mathbf{p}_{i} \\ \lambda_{i}>0 \\ \Sigma \lambda_{i}=1\end{array} \Rightarrow\right.$ use these λ as edge weights.

Harmonic mapping

- Another way to find inner vertices
- Strives to preserve angles (conformal)
- We treat the mesh as a system of springs.
- Define spring energy:

$$
E_{\text {harm }}=\frac{1}{2} \sum_{(i, j) \in E} k_{i, j}\left\|\boldsymbol{v}_{i}-\boldsymbol{v}_{j}\right\|^{2}
$$

where v_{i} are the flat position (remember that the boundary vertices v_{n+1}, \ldots, v_{N} are constrained).

Energy minimization - least squares

- To find minimum: $\nabla E_{\text {harm }}=0$

$$
\begin{aligned}
& \sum_{j \in N(i)} k_{i, j}\left(x_{i}-x_{j}\right)=0, \quad i=1,2, \ldots, n \\
& \sum_{j \in N(i)} k_{i, j}\left(y_{i}-y_{j}\right)=0, \quad i=1,2, \ldots, n
\end{aligned}
$$

Again, x_{n+1}, \ldots, x_{N} and y_{n+1}, \ldots, y_{N} are constrained.

Energy minimization - least squares

- To find minimum: $\nabla E_{\text {harm }}=0$

$$
\begin{aligned}
& \frac{\partial}{\partial x_{i}} E_{\text {hamm }}=\frac{1}{2} \sum_{j \in N(i)} 2 k_{i, j}\left(x_{i}-x_{j}\right)=0 \\
& \frac{\partial}{\partial y_{i}} E_{\text {hamm }}=\frac{1}{2} \sum_{j \in N(i)} 2 k_{i, j}\left(y_{i}-y_{j}\right)=0
\end{aligned}
$$

Again, x_{n+1}, \ldots, x_{N} and y_{n+1}, \ldots, y_{N} are constrained.

Discussion

- The results of harmonic mapping are better than those of convex mapping (local area and angles preservation).
- But: the mapping is not always legal (the weights can be negative for badly-shaped triangles...)
- Both mappings have the problem of fixed boundary it constrains the minimization and causes distortion.
- There are more advanced methods that do not require boundary conditions.

The spring constants $k_{i, j}$

- The weights $k_{i, j}$ are chosen to minimize angles distortion:
\square Look at the edge (i, j) in the 3D mesh
\square Set the weight $k_{i, j}=\cot \alpha+\cot \beta$

3D

