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Computer Graphics

By Olga Sorkine
Some slides courtesy of Pierre Alliez and Craig Gotsman

Texture mapping and 
parameterization
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The plan for today

Reminder: triangle meshes
What is parameterization and what is it good for:

Texture mapping 
Remeshing

Parameterization
Convex mapping
Harmonic mapping
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Triangle mesh

Discrete surface representation
Piecewise linear surface (made of triangles)

4

Triangle mesh

Geometry:
Vertex coordinates

(x1, y1, z1)
(x2, y2, z2)

.    .    .

(xn, yn, zn)

Connectivity (the graph)
List of triangles

(i1, j1, k1)
(i2, j2, k2)

.    .    .

(im, jm, km)
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2D parameterization

3D space (x,y,z)
2D parameter domain (u,v)

boundary
boundary
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Application - Texture mapping
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Requirements

Bijective (1-1 and onto): No triangles fold over.
Minimal “distortion”

Preserve 3D angles
Preserve 3D distances
Preserve 3D areas
No “stretch”
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Distortion minimization

Kent et al ‘92 Floater 97 Sander et al ‘01

Texture map
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More texture mapping
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Applications

Texture Mapping
Remeshing
Surface Reconstruction
Morphing 
Compression

Remeshing
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Remeshing examples
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More remeshing examples
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Conformal parametrization

Texture map

Tutte Shape-preserving Conformal
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Non-simple domains
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Cutting
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Parameterization of closed genus-0 triangle meshes

Non-Constrained Planar Spherical
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Convex mapping (Tutte, Floater)

Works for meshes equivalent to a disk
First, we map the boundary to a convex polygon
Then we find the inner vertices positions

v1, v2, …, vn – inner vertices;          vn+1, …, vN – boundary vertices
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Inner vertices

We constrain each inner vertex to be a weighted 
average of its neighbors:
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Linear system of equations
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Shape preserving weights

To compute λ1, …, λ5, a local embedding of the patch is found:

1) || pi – p || = || xi – x ||

2) angle(pi, p, pi+1) = (2π /Σθi ) angle(vi, v, vi+1)

p4 p3

p5

p1

p
p2

2D3D

p = Σ λi pi

λi > 0
Σ λi  = 1

⇒ use these λ as edge weights.∃ λi ,

v3 v2

v1v4 v5

v θ1
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Linear system of equations

A unique solution always exists
Important: the solution is legal (bijective)

The system is sparse, thus fast numerical 
solution is possible
Numerical problems (because the vertices in the 
middle might get very dense…)
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Harmonic mapping

Another way to find inner vertices
Strives to preserve angles (conformal)
We treat the mesh as a system of springs.
Define spring energy:

where vi are the flat position (remember that the boundary
vertices vn+1, …, vN are constrained).
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Energy minimization – least squares

We want to find such flat positions that the 
energy is as small as possible.
Solve the linear least squares problem! 

( ).)()(
2
1

2
1),,,,,(

),(

),(

22
,

),(

2

,11

∑

∑

∈

∈

−+−=

=−=

=

Eji
jijiji

Eji
jijinnharm

iii

yyxxk

kyyxxE

yx

vv

v

……

Eharm is function of 2n variables



5

25

Energy minimization – least squares

To find minimum: ∇Eharm= 0

Again, xn+1,…., xN and yn+1, …, yN are constrained.
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Energy minimization – least squares

To find minimum: ∇Eharm= 0

Again, xn+1,…., xN and yn+1, …, yN are constrained.
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The spring constants ki,j

The weights ki,j are chosen to minimize angles 
distortion:

Look at the edge (i, j) in the 3D mesh
Set the weight   ki,j = cot α + cot β

α β

i

j
3D
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Discussion

The results of harmonic mapping are better than those of 
convex mapping (local area and angles preservation).
But: the mapping is not always legal (the weights can be 
negative for badly-shaped triangles…)
Both mappings have the problem of fixed boundary –
it constrains the minimization and causes distortion.
There are more advanced methods that do not require 
boundary conditions.

See you next time


