
1

Computer Graphics Course
2001

OpenGL - Lighting, Shading and
Material Properties

Hidden Surface Removal

z First we begin with hidden surface removal. When
drawing objects in order which does not match the
order of their appearance (distance from the camera)
we get wrong occlusions.

z Note: the order is view dependent, therefore for each
viewpoint a different drawing order should be found.

Drawn

first

Drawn

next
Result without
hidden surface

removal

occluded

Hidden Surface Removal

zOpenGL solves this problem by holding a depth-map
called “Z-Buffer”. This buffer holds the depths (distances
on the Z direction) of each pixel drawn on the frame
buffer. Then, when a new object is painted, a depth test
determines for each pixel if it should be updated or not.

z To turn this mechanism on, the following steps should
be taken:
ygluInitDisplayMode(GLUT_DEPTH | …) ;
yglEnable(GL_DEPTH_TEST) ;
yglClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;

OpenGL’s Shading models

z glShadeModel(GLenum mode) - Sets the shading
model which can be either GL_SMOOTH or GL_FLAT.

z FLAT shading model:
yThe color of one particular vertex is used to render

the entire primitive.

z SMOOTH shading model:
yThe color used to render the primitive is a result of

color interpolation between the primitive’s vertices’
colors.

OpenGL’s Lighting model

zOpenGL supports a lighting model which includes:
yMultiple light sources.
ySpots, Points and directional light sources.
yDifferent material properties.
ySurface normals.

z The lighting model uses above factor to estimate
vertices colors.

z glEnable(GL_LIGHTING) - will enable OpenGL’s lighting
model. Once this is enables the glColor doesn’t effects
the vertices colors (material color attributes are now
responsible for the objects own color).

OpenGL’s Lighting model

zThe Lighting Model:

z glEnable (GL_LIGHTX) - X = 0…7 - enable light source.
z glLight{if}(GLenum lightnum, GLenum pname, TYPE param)
z glLight{if}v(GLenum lightnum , GLenum pname, TYPE *param) -

sets the property pname of light lightnum to be param:
y GL_AMBIENT (R,G,B,A) RGBA values.
y GL_DIFFUSE (R,G,B,A) RGBA values.

y GL_SPECULAR (R,G,B,A) RGBA values.

y GL_POSITION (X,Y,Z,W) Position in space.

i

vertex color *

attenuation_factor*spotlight_effect*()

material light_model material

i
lights
sources

emission ambient ambient

ambient diffuse specular

= + +

+ +∑

2

OpenGL’s Lighting model

yGL_SPOT_DIRECTION (x,y,z) Direction vector
yGL_SPOT_EXPONENT e spotlight exponent
yGL_SPOT_CUTOFF ang spotlight cutoff angle
yGL_CONSTANT_ATTENUATION kc Const. Attn. Factor
yGL_LINEAR_ATTENUATION kl Linear Attn. Factor
yGL_CONSTANT_ATTENUATION kq Quadric Attn. Factor

z glMaterial{if}(GLenum face, GLenum pname, TYPE param)
glMaterial{if}v(GLenum face, GLenum pname, TYPE *param) -
sets the vertex material property pname to be param on face.
y GL_AMBIENT (R,G,B,A) RGBA color
y GL_DIFFUSE (R,G,B,A) RGBA color

y GL_SPECULAR (R,G,B,A) RGBA color

y GL_SHININESS s specular exponent
y GL_EMISSION e emissive color of vertex.

OpenGL’s Lighting model

z Argument face is:
yGL_FRONT
yGL_BACK
yGL_FRONT_AND_BACK

z This determines on which face of the primitive to apply the
glMaterial.

z Primitives ’ sides are determined by the order of their vertices:

z glFrontFace(GLenum mode) - determines which order will define
the front face. Arguments: GL_CCW, GL_CW (order on the
projected windows)

v1

v2v3

v1

v3v2

ClockWise CounterClockWise

OpenGL’s Lighting model

z Emission term: The material emissive light value (GL_EMISSION)

z Attenuation Factor:

z Spotlight Effect:

ON_ATTENUATIGL_QUADRIC

NATTENUATIOGL_LINEAR_
IONT_ATTENUATGL_CONSTAN

 vertexand sourcelight between distance

−

−
−

−

q

l

c

k

k
k

d

2

1
dkdkk qlc ++

⋅
=

otherwiseEXPONENTSPOTGL __}0,max{
conelight theofout is vertex theIf 0

spotlighta not islight theIf 1

dv
TION)SPOT_DIREC

(GL_ direction spots theis),,(
 vertex. thetospotlight thefrom

 pointsr that unit vecto theis),,(

x zy

zyx

ddd

vvv

=

=

d

v

i

vertex color *

attenuation_factor*spotlight_effect*()

material light_model material

i
lights
sources

emission ambient ambient

ambient diffuse specular

= + +

+ +∑

OpenGL’s Lighting model

z Ambient Term: light’s ambient color multiplied by the
materials (GL_AMBIENT):

z Note: The multiplication above is individually for the
R,G,B and A color components.

z Diffuse Term: The direct light that reaches the vertex. It
is directional depended:

z glNormal3{bsidf}(TYPE nx, TYPE ny, TYPE nz)
glNormal3{bsidf}v(TYPE *v) - Defines the current normal vector.
Next time glVertex will be called, the current normal will be
assigned to the vertex.

z Note: OpenGL - can receive non-unit normals and normalize them if
glEnable (GL_NORMALIZE) is called.

lightmaterial ambientambient *

lightmaterial diffusediffuse *})0,(max{ ⋅⋅nL

 vertex.at the vector normalunit theIs),,(

ON)(GL_POSITIpositionlight the vertex to thefrom pointsr that unit vecto theIs),,(

xyx

zyx

nnn

LLL

=

=

n

L

OpenGL’s Lighting model

zSpecular Term: Is calculated as follows:

zAll together gives:

shininess})0,(max{ ns ⋅

 position viewer vertex tofrom
positionlight vertex tofrom

:pointing rsunit vecto two theo f sum normalized

 vactornormalvertex

=

−

s

n

+⋅

+⋅

+

++

+=

∑

ilightmaterial
shininess

i

ilightmateriali

ilightmaterial

ii
vertices qlc

material

specularspecular

diffusediffuse

ambientambient

ffectspotlighte
dkdkk

emission

i)(**})0,(max{

)(**})0,(max{

)(*

**)1(

colorvertex

2

ns

nL

OpenGL’s Lighting model

zPoint:

zDistant:

zSpot:
GL_SPOT_CUTOFF

3

OpenGL’s Lighting model

z Light sources types:
yPoint - Light coming from a single point in 3D space.

This is the default light source.
yDistant/directional - Light coming from a direction.

Light Rays a parallel. This is specified by putting 0
zero in the fourth coordinate of the GL_POSITION
attribute of the light source. (Remember what
vectors of the type (x,y,z,0) mean in projective
spaces).
ySpot - Light coming from a point same as in Point

lights, but has a direction around which light intensity
drops. Specified by setting GL_SPOT_CUTOFF to be
less than 180.

OpenGL’s Lighting model

z Lights Position: we can think of three relations between
the light position and the objects position:
yA light position that remains fixed.
yA light that moves around a stationary object.
yA light that moves along with the viewpoint .

z A important fact needed in order to achieve the above
cases is:

zWhen glLight is called to specify the position or the
direction of a light source, the position or direction is
transformed by the current modelview matrix.

OpenGL’s Lighting model

zA light position that remains fixed:
zIn this case lights (pos/dirs) should go only

through the viewing transformations.
zThis means that we will specify the light

pos/dirs After view trans. Has been defined but
before model trans has been defined:
yglMatrixMode(GL_MODELVIEW) ;
yglLookAt / any view transform
yglLight(GL_POSITION/DIRECTION)
yglRotate/glTranslate/glScale - on the objects.

OpenGL’s Lighting model

zA light that moves around a stationary object :
z In this case lights (pos/dirs) should go only through the viewing

and model transformations, while the objects will go only through
view transformations .

z This means that we will specify the light pos/dirs After view and
model trans . But the objects won’t go through the model trans :
yglMatrixMode(GL_MODELVIEW) ;
yglLookAt / any view transform
yglPushMatrix() ;
yglTranslate() / glRotate() (for light pos and dir)
yglLight(GL_POSITION/DIRECTION)
yglPopMatrix() ;
yglBegin() … glEnd() // Draw the objects.

OpenGL’s Lighting model

z A light that moves along with the viewpoint:
z In this case lights (pos/dirs) should not go through any

transformations. They stay in the camera (eyes)
coordinate system.

z First we call glLight when modelview is identity*. Then
we specify view and model transformations for the
objects:
yglMatrixMode(GL_MODELVIEW) ;
yglLoadIdentity() ; (*or any location / rotation in eye coord. sys.)
yglLight(GL_POSITION/DIRECTION)
yglLookAt / any view transform
yglTranslate() / glRotate() (for objects)
yglBegin() … glEnd() // Draw the objects.

