Computer Graphics Course
2001

OpenGL - Lighting, Shading and
Material Properties

Hidden Surface Removal

3 First we begin with hidden surface removal. When
drawing objects in order which does not match the
order of their appearance (distance from the camera)
we get wrong occlusions.

Drawn occ} uded
= next
Result without
J— hidden surface
\)rawn removal
\/ first

3 Note: the order is view dependent, therefore for each
viewpoint a different drawing order should be found.

Hidden Surface Removal

38 OpenGL solves this problem by holding a depth-map
called “Z-Buffer”. This buffer holds the depths (distances
on the Z direction) of each pixel drawn on the frame
buffer. Then, when a new object is painted, a depth test
determines for each pixel if it should be updated or not.

3 To turn this mechanism on, the following steps should
be taken:

A glulnitDisplayMode(GLUT_DEPTH | ...) ;
HglEnable(GL_DEPTH_TEST) ;
HglClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;

OpenGL’s Shading models

3 glShadeModel(GLenum mode) - Sets the shading
model which can be either GL_SMOOTH or GL_FLAT.
38 FLAT shading model:

B The color of one particular vertex is used to render
the entire primitive.

3 SMOOTH shading model: |

R The color used to render the primitive is a result of
color interpolation between the primitive's vertices’
colors.

OpenGL’s Lighting model

3 OpenGL supports a lighting model which includes:
AMultiple light sources.
RASpots, Points and directional light sources.
IDifferent material properties.
[AlSurface normals.
3 The lighting model uses above factor to estimate
vertices colors.

3 glEnable(GL_LIGHTING) - will enable OpenGL's lighting
model. Once this is enables the glColor doesn't effects
the vertices colors (material color attributes are now
responsible for the objects own color).

OpenGL’s Lighting model

¥ The Lighting Model:

vertex color = emiSSiONygeria + @MDI €Nt gt moce * AMDI €N rgyeriar +
é attenuation factor*spotlight effect* (ambient + diffuse + specular);
ligns
¥ glEnable (GL_LIGHTX) - X = 0...7 - enable light source.
8 glLight{if}(GLenum lightnum, GLenum pname, TYPE param)

glLight{if}v(GLenum lightnum, GLenum pname, TYPE *param) -
sets the property pname of light lightnum to be param:

GL_AMBIENT (R,G,B,A) RGBA values.
GL_DIFFUSE (R,G,B,A) RGBA values.
GL_SPECULAR (R,G,B,A) RGBA values.

GL_POSITION (X,Y,Z,W) Position in space.

OpenGL'’s Lighting model

RIGL_SPOT_DIRECTION (x,y,z) Direction vector
RIGL_SPOT_EXPONENT e spotlight exponent
RIGL_SPOT_CUTOFF ang spotlight cutoff angle
[RIGL_CONSTANT_ATTENUATION ke Const. Attn. Factor
NIGL_LINEAR_ATTENUATION ki Linear Attn. Factor

[RIGL_CONSTANT_ATTENUATION kg Quadric Attn. Factor
¥ glMateriaKif}(GLenum face, GLenum pname, TYPE param)
glMateriaKif}v(GLenum face, GLenum pname, TYPE *param) -
sets the vertex material property pname to be param on face.

GL_AMBIENT (R,G,B,A) RGBA color
GL_DIFFUSE (R,G,B,A) RGBA color
GL_SPECULAR (R,G,B,A) RGBA color
GL_SHININESS s specular exponent
GL_EMISSION e emissive color of vertex.

OpenGL'’s Lighting model

8 Argument face is:
RGL_FRONT
RGL_BACK
RGL_FRONT_AND_BACK

This determines on which face of the primitive to apply the
glMaterial.

3 Primitives’ sides are determined by the order of their vertices:

1 1
vi//\vz /Kw

ClockWise CounterClockWise
glFrontFace(GLenum mode) - determines which order will define
the front face. Arguments: GL_CCW, GL_CW (order on the
projected windows)

OpenGL'’s Lighting model

vertex color = emissiONieriar + @MDI €N ign: moger * AMDI €Nbggerias +
é attenuation factor*spotlight effegt* (ambient + diffuse+ specular);

s
&8 Emission term: The material emissive light value (GL_EMISSION)
3 Attenuation Factor:

d - distancéetweenlightsourceand vertex 1
k. - GL_CONSTAN_ATTENUATON R R
k - GL_LINEARATTENUATION k. +kd +k,d?
K, - GL_QUADRICATTENUATDN

38 Spotlight Effect:
Vv =(ViVy V) istheunit vecto that points il If thelightisnot aspotlight

from thespotlight tothevertex. =10 If thevertexisoutof thdightcone
d=(d, ,dy,d7) isthespotsdirection(GL_ } max{v>d,0}“73’m _BPONENT tharyvise
SPOT_DIRECTION)

OpenGL'’s Lighting model

3 Ambient Term: light's ambient color multiplied by the
materials (GL_AMBIENT): ambient, ... * ambient

38 Note: The multiplication above is individually for the
R,G,B and A color components.

3 Diffuse Term: The direct light that reaches the vertex. It

is directional depended: (max{ L x,0}) >diffusg iy * diffusg,,
L=(L, L, L,) Istheunit vecto thatpoints§romthevertex tahdightpositi oiGL_POSITION)
n=(n,n,n)ls theunimormalvectorat thevertex.
8 gINormal3{bsidf}(TYPE nx, TYPE ny, TYPE nz)
glNormal3{bsidf }v(TYPE *v) - Defines the current normal vector.
Next time glVertex will be called, the current normal will be
assigned to the vertex.
$ Note: OpenGL - can receive non-unit normals and normalize them if
glEnable (GL_NORMALIZE) is called.

light

OpenGL’s Lighting model

b Specular Term: Is calculated as follows:
n - vertexnormal vactor
s=normalizedsumof thetwounit vectes pointing (max{smvo})
fromvertex tdightposition
fromvertex tosiewerposition

Al together gives:

vertex col or= emi ssi ORygia +

shinines

Y 1 " ; *
ﬁ?ﬂ (m)‘ spotlightiéect
ambi enf,., * (@mbienty,); +

(max{ L, >xn,0})* diffuse, .. * (diffus;?gm)I +

(max{ 5 N,0})™""™= * specul afeq * (SPECUI,,), +

OpenGL’s Lighting model
F#Point:

F#Distant: ——~v
=
¥ Spot: =

GL_SPOT_CUTOFF

OpenGL'’s Lighting model

38 Light sources types:

[APoint - Light coming from a single point in 3D space.
This is the default light source.

A Distant/directional - Light coming from a direction.
Light Rays a parallel. This is specified by putting 0
zero in the fourth coordinate of the GL_POSITION
attribute of the light source. (Remember what
vectors of the type (x,y,z,0) mean in projective
spaces).

[AlSpot - Light coming from a point same as in Point
lights, but has a direction around which light intensity
drops. Specified by setting GL_SPOT_CUTOFF to be
less than 180

OpenGL'’s Lighting model

3 Lights Position: we can think of three relations between
the light position and the objects position:
EA light position that remains fixed.
[AA light that moves around a stationary object.
HA light that moves along with the viewpoint .
38 A important fact needed in order to achieve the above
cases is:

3 When glLight is called to specify the position or the
direction of a light source, the position or direction is
transformed by the current modelview matrix.

OpenGL'’s Lighting model

FA light position that remains fixed:

3 In this case lights (pos/dirs) should go only
through the viewing transformations

¥ This means that we will specify the light
pos/dirs After view trans. Has been defined but
before model trans has been defined:
[RgIMatrixMode(GL_MODELVIEW) ;
RglLookAt / any view transform
AglLight(GL_POSITION/DIRECTION)
[RlglRotate/glTranslate/glScale - on the objects.

OpenGL'’s Lighting model

3 A light that moves around a stationary object :

3 In this case lights (pos/dirs) should go only through the viewing
and model transformations, while the objects will go only through
view transformations.

3 This means that we will specify the light pos/dirs After view and
model trans. But the objects won't go through the model trans:

R glMatrixMode(GL_MODELVIEW) ;

A glLookAt / any view transform

R glPushMatrix() ;

[RglTranslatg) / glRotate() (for light pos and dir)
R glLight(GL_POSITION/DIRECTION)

R glPopMatrix() ;

RglBegin) ... glEnd() // Draw the objects.

OpenGL’s Lighting model

3 A light that moves along with the viewpoint

3 In this case lights (pos/dirs) should not go through any
transformations. They stay in the camera (eyes)
coordinate system.

38 First we call glLight when modelview is identity*. Then
we specify view and model transformations for the
objects:

HglMatrixMode(GL_MODELVIEW) ;

R glLoadldentity() ; (*or any location / rotation in eye coord. sys.)
HglLight(GL_POSITION/DIRECTION)

R glLookAt / any view transform

HglTranslatg) / glRotate() (for objects)

R glBegin() ... glEnd() // Draw the objects.

