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OpenGL - Lighting, Shading and
Material Properties

Hidden Surface Removal

3 First we begin with hidden surface removal. When
drawing objects in order which does not match the
order of their appearance (distance from the camera)
we get wrong occlusions.
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3 Note: the order is view dependent, therefore for each
viewpoint a different drawing order should be found.

Hidden Surface Removal

38 OpenGL solves this problem by holding a depth-map
called “Z-Buffer”. This buffer holds the depths (distances
on the Z direction) of each pixel drawn on the frame
buffer. Then, when a new object is painted, a depth test
determines for each pixel if it should be updated or not.

3 To turn this mechanism on, the following steps should
be taken:

A glulnitDisplayMode(GLUT_DEPTH | ... ) ;
HglEnable(GL_DEPTH_TEST) ;
HglClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT) ;

OpenGL’s Shading models

3 glShadeModel(GLenum mode) - Sets the shading
model which can be either GL_SMOOTH or GL_FLAT.
38 FLAT shading model:

B The color of one particular vertex is used to render
the entire primitive.

3 SMOOTH shading model: |

R The color used to render the primitive is a result of
color interpolation between the primitive's vertices’
colors.

OpenGL’s Lighting model

3 OpenGL supports a lighting model which includes:
AMultiple light sources.
RASpots, Points and directional light sources.
IDifferent material properties.
[AlSurface normals.
3 The lighting model uses above factor to estimate
vertices colors.

3 glEnable(GL_LIGHTING) - will enable OpenGL's lighting
model. Once this is enables the glColor doesn't effects
the vertices colors (material color attributes are now
responsible for the objects own color).

OpenGL’s Lighting model

¥ The Lighting Model:

vertex color = emiSSiONygeria + @MDI €Nt gt moce * AMDI €N rgyeriar +
é attenuation factor*spotlight effect* (ambient + diffuse + specular);
ligns
¥ glEnable (GL_LIGHTX) - X = 0...7 - enable light source.
8 glLight{if}(GLenum lightnum, GLenum pname, TYPE param)

# glLight{if}v(GLenum lightnum, GLenum pname, TYPE *param) -
sets the property pname of light lightnum to be param:

GL_AMBIENT (R,G,B,A) RGBA values.
GL_DIFFUSE (R,G,B,A) RGBA values.
GL_SPECULAR (R,G,B,A) RGBA values.

GL_POSITION (X,Y,Z,W) Position in space.




OpenGL'’s Lighting model

RIGL_SPOT_DIRECTION  (x,y,z) Direction vector
RIGL_SPOT_EXPONENT e spotlight exponent
RIGL_SPOT_CUTOFF ang spotlight cutoff angle
[RIGL_CONSTANT_ATTENUATION ke Const. Attn. Factor
NIGL_LINEAR_ATTENUATION ki Linear Attn. Factor

[RIGL_CONSTANT_ATTENUATION kg Quadric Attn. Factor
¥ glMateriaKif}(GLenum face, GLenum pname, TYPE param)
glMateriaKif}v(GLenum face, GLenum pname, TYPE *param) -
sets the vertex material property pname to be param on face.

GL_AMBIENT (R,G,B,A) RGBA color
GL_DIFFUSE (R,G,B,A) RGBA color
GL_SPECULAR (R,G,B,A) RGBA color
GL_SHININESS s specular exponent
GL_EMISSION e emissive color of vertex.

OpenGL'’s Lighting model

8 Argument face is:
RGL_FRONT
RGL_BACK
RGL_FRONT_AND_BACK

# This determines on which face of the primitive to apply the
glMaterial.

3 Primitives’ sides are determined by the order of their vertices:

1 1
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ClockWise  CounterClockWise
# glFrontFace(GLenum mode) - determines which order will define
the front face. Arguments: GL_CCW, GL_CW (order on the
projected windows)

OpenGL'’s Lighting model

vertex color = emissiONieriar + @MDI €N ign: moger * AMDI €Nbggerias +
é attenuation factor*spotlight effegt* (ambient + diffuse+ specular);

s
&8 Emission term: The material emissive light value (GL_EMISSION)
3 Attenuation Factor:

d - distancéetweenlightsourceand vertex 1
k. - GL_CONSTAN_ATTENUATON R R
k - GL_LINEARATTENUATION k. +kd +k,d?
K, - GL_QUADRICATTENUATDN

38 Spotlight Effect:
Vv =(ViVy V) istheunit vecto that points il If thelightisnot aspotlight

from thespotlight tothevertex. =10 If thevertexisoutof thdightcone
d=(d, ,dy,d7) isthespotsdirection(GL_ } max{v>d,0}“73’m _BPONENT tharyvise
SPOT_DIRECTION)

OpenGL'’s Lighting model

3 Ambient Term: light's ambient color multiplied by the
materials (GL_AMBIENT): ambient, ... * ambient

38 Note: The multiplication above is individually for the
R,G,B and A color components.

3 Diffuse Term: The direct light that reaches the vertex. It

is directional depended: (max{ L x,0}) >diffusg iy * diffusg,,
L=(L, L, L,) Istheunit vecto thatpoints§romthevertex tahdightpositi oiGL_POSITION)
n=(n,n,n)ls theunimormalvectorat thevertex.
8 gINormal3{bsidf}(TYPE nx, TYPE ny, TYPE nz)
glNormal3{bsidf }v(TYPE *v) - Defines the current normal vector.
Next time glVertex will be called, the current normal will be
assigned to the vertex.
$ Note: OpenGL - can receive non-unit normals and normalize them if
glEnable (GL_NORMALIZE) is called.

light

OpenGL’s Lighting model

b Specular Term: Is calculated as follows:
n - vertexnormal vactor
s=normalizedsumof thetwounit vectes pointing (max{smvo})
fromvertex tdightposition
fromvertex tosiewerposition

Al together gives:

vertex col or= emi ssi ORygia +

shinines

Y 1 " ; *
ﬁ?ﬂ (m)‘ spotlightiéect
ambi enf,., * (@mbienty,); +

(max{ L, >xn,0})* diffuse, .. * (diffus;?gm)I +

(max{ 5 N,0})™""™= * specul afeq * (SPECUI,,), +

OpenGL’s Lighting model
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OpenGL'’s Lighting model

38 Light sources types:

[APoint - Light coming from a single point in 3D space.
This is the default light source.

A Distant/directional - Light coming from a direction.
Light Rays a parallel. This is specified by putting 0
zero in the fourth coordinate of the GL_POSITION
attribute of the light source. (Remember what
vectors of the type (x,y,z,0) mean in projective
spaces).

[AlSpot - Light coming from a point same as in Point
lights, but has a direction around which light intensity
drops. Specified by setting GL_SPOT_CUTOFF to be
less than 180

OpenGL'’s Lighting model

3 Lights Position: we can think of three relations between
the light position and the objects position:
EA light position that remains fixed.
[AA light that moves around a stationary object.
HA light that moves along with the viewpoint .
38 A important fact needed in order to achieve the above
cases is:

3 When glLight is called to specify the position or the
direction of a light source, the position or direction is
transformed by the current modelview matrix.

OpenGL'’s Lighting model

FA light position that remains fixed:

3 In this case lights (pos/dirs) should go only
through the viewing transformations

¥ This means that we will specify the light
pos/dirs After view trans. Has been defined but
before model trans has been defined:
[RgIMatrixMode(GL_MODELVIEW ) ;
RglLookAt / any view transform
AglLight(GL_POSITION/DIRECTION)
[RlglRotate/glTranslate/glScale - on the objects.

OpenGL'’s Lighting model

3 A light that moves around a stationary object :

3 In this case lights (pos/dirs) should go only through the viewing
and model transformations, while the objects will go only through
view transformations.

3 This means that we will specify the light pos/dirs After view and
model trans. But the objects won't go through the model trans:

R glMatrixMode(GL_MODELVIEW) ;

A glLookAt / any view transform

R glPushMatrix() ;

[RglTranslatg) / glRotate() (for light pos and dir)
R glLight(GL_POSITION/DIRECTION)

R glPopMatrix() ;

RglBegin) ... glEnd() // Draw the objects.

OpenGL’s Lighting model

3 A light that moves along with the viewpoint

3 In this case lights (pos/dirs) should not go through any
transformations. They stay in the camera (eyes)
coordinate system.

38 First we call glLight when modelview is identity*. Then
we specify view and model transformations for the
objects:

HglMatrixMode(GL_MODELVIEW) ;

R glLoadldentity() ; (*or any location / rotation in eye coord. sys.)
HglLight(GL_POSITION/DIRECTION)

R glLookAt / any view transform

HglTranslatg) / glRotate() (for objects)

R glBegin() ... glEnd() // Draw the objects.




