An Incremental Algorithm

HInput：endpoints $\left(x_{1}, y_{1}\right)$ and（ x_{2}, y_{2} ）
HCompute $\quad a=\frac{\left(y_{2}-y_{1}\right)}{\left(x_{2}-x_{1}\right)}$
HLine equation $\quad y=a x+\left(y_{1}-a x_{1}\right)=a x+b$
Hfor $x:=x 1$ to $x 2$
囚y ：＝Round（ $a x+b$ ）
囚DrawPixel（ x, y ）

Rasterization

\mathscr{H} Clip primitives to viewing window．
\mathscr{H} Transform clipped primitives to device coordinates．
HPoints：round floating point coordinates to nearest pixel coordinates．
HLines：determine the coordinates of all pixels that＂lie＂on the line．

Incremental Algorithm

\mathscr{H} Note：when x is incremented by $1, \mathrm{y}$ is incremented by a

HDrawPixel（ $\mathrm{x} 1, \mathrm{y} 1$ ）
भy ：＝ y 1
भfor $x:=x 1+1$ to $x 2$
囚y ：＝y＋a
©DrawPixel（ x ，Round（y））

The Midpoint Algorithm

\＆Given a chosen pixel (x, y) ，the next pixel will be：
$\triangle(x+1, y)$ if $F(M)<=0$（denote this pixel by E ） $\boxtimes(\mathrm{x}+1, \mathrm{y}+1)$ if $\mathrm{F}(\mathrm{M})>0$（denote this pixel by $N E$ ）

The Midpoint Algorithm

 equation：

$$
F(x, y)=A x+B y+C=0
$$

HThe relation between any point（ x, y ）and the line can be determined by the sign of $F(x, y)$ ：
$\triangle F(x, y)=0$ for points $O N$ the line
$\triangle F(x, y)<0$ for points ABOVE the line
$\triangle F(x, y)>0$ for points BELOW the line

The Midpoint Algorithm

Hif $d<=0$, we choose $(x+1, y)$ (E)囚 $M=M+(1,0)=>d=d+A$
HIf $d>0$, we choose $(x+1, y+1) \quad(N E)$囚 $M=M+(1,1) \quad=>\quad d=d+(A+B)$
HEach iteration we compute d by adding either A or $(A+B)$, based on the sign of d

The Midpoint Algorithm

HFor each pixel compute: $d=A(x+1)+B\left(y+\frac{1}{2}\right)+C$ \mathscr{H} Make a decision based on sign of d HIncrementally update M and d

The Midpoint Algorithm

\mathscr{H} What should the initial value of d be?

$$
\begin{aligned}
F\left(x_{1}+1, y_{1}+\frac{1}{2}\right) & =A\left(x_{1}+1\right)+B\left(y_{1}+\frac{1}{2}\right)+C \\
& =A x_{1}+B y_{1}+C+\left(A+\frac{B}{2}\right) \\
& =F\left(x_{1}, y_{1}\right)+\left(A+\frac{B}{2}\right) \\
& =\left(A+\frac{B}{2}\right)
\end{aligned}
$$

HTo avoid division, we'll multiply everything by 2 , and result with the following algorithm:

