
1

Computer Graphics Course 
2005

Introduction to GLUT, GLU and 
OpenGL

Administrative Stuff

aTeaching Assistant: Rony Goldenthal
aReception Hour: Wed. 18:00 – 19:00 

Room 31 (Ross – 1)
aQuestions:
`E-mail: cg@cs
`Newsgroups: local.course.cg



2

Exercises

a~6 exercises, can be submitted in pairs       
(except ex0)
aProgramming Language: C/C++
aProgramming Guidelines – see homepage
aExercises planned to be:
`Fun
`Creative
`Educational

What is OpenGL

aOpenGL is a software interface to 
graphics hardware. 
aMainly used for interactive 3D graphics
aConsists about 250 commands Available 

both in software and hardware over 
different environments
aSpecifications set by leading industry 

companies



3

GLU - OpenGL Utility 
Library

aHigher level library - wraps some of 
OpenGL’s functions.
a Provides modelling features such as: 

basic geometric primitives, polygons 
tessellation, quadric surfaces and NURBS
aHelps setting view and projection 

matrices.

GLUT - OpenGL Utility 
Toolkit

aOS independent windowing toolkit for 
graphics purposes
aUsed mainly for educational purposes  - to 

learn OpenGL
aSimple event-driven kit !
aEasy to write small applications based on 

OpenGL



4

Recognizing Command’s Source

aOpenGL commands use gl prefix
aGLU       commands use glu previx
aGLUT     commands use glut previx

GLUT Basics: Initialization

aglutInit(int *argc, char *argv[]) 
`Initializes GLUT and processes command line 

arguments.
` Should be called before any other GLUT routine.

aglutInitDisplayMode(unsigned int mode) –
`Specifies the window display mode, for example:

⌧GLUT_RGB - sets RGB color mode instead of indexed-color
⌧GLUT_DOUBLE - sets double buffered window instead of 

single
⌧GLUT_DEPTH - enables depth buffered window.



5

GLUT Basics: Initialization

aglutInitWindowPosition(int x, int y) 
`specifies the initial screen location for the upper-left 

corner of the GLUT window.

aglutInitWindowSize(int width, int height) 
`specifies the initial window dimensions.

a int glutCreateWindow(char *string)  
`Creates a window for OpenGL purposes. 
`Returns the window’s id. 
`Warning: window will not appear before 

glutMainLoop is called.

GLUT Basics: Running GLUT

aglutMainLoop() 
`Starting point of GLUT
`Windows are displayed
`Event processing started
`After calling it, no direct control over 

program flow
`Do not start rendering to a window before 

calling it



6

GLUT Basics: Event Handling

aOnce GLUT detects an event it calls the 
appropriate – ‘callback’ function (CBF)

aglut***Func() is used to connect an event to a 
user defined CBF (by passing a pointer to the 
CBF)

aEvent types: window, mouse, keyboard, timer

GLUT Basics: Window Events

a glutDisplayFunc(void (*func)(void)) –
`handles window display (rendering)

a glutReshapeFunc(void (*func)(int w, int h))
a handles changes in window size.



7

GLUT Basics: 
Keyboard and Mouse Events

a glutKeyboardFunc(void (*func)(unsigned char key, int
x, int y)) 
`handles keyboard strokes

a glutMouseFunc(void (*func)(int button, int state, int
x, int y)) –
`handles mouse buttons events – press/release
`button = GLUT_LEFT_BUTTON, GLUT_MIDDLE_BUTTON, 

GLUT_RIGHT_BUTTON
`state = GLUT_DOWN, GLUT_UP

a glutMotionFunc(void (*func)(int x, int y)) –
`handles mouse movement events (while one of the buttons is 

pressed - dragging)

GLUT Basics: Timer Event

a glutTimerFunc(int millis, void (*func)(int value), int
value)
`Called once in millis time (from now) and will send value as the 

argument.

a glutIdleFunc(void (*func)(void)) 
`Called whenever the event loop is idle
`Used to manage background tasks



8

GLUT Basics: Other Commands

aglutSwapBuffers( ) 
`used in double buffer mode, in the display function

aglutPostRedisplay()
`Notifies GLUT that the window needs to be redrawn
`Never call the display function directly

OpenGL Command Syntax

a All OpenGL commands start with gl.
a Defined constants begin with GL_ and are all capital 

`Example: GL_COLOR_BUFFER_BIT
a Suffix tells us which data type the function accepts:

`b – signed char:  GLbyte
`ub – unsigned char: GLubyte
`i – 32 bit integer: Glint
`f – 32 bit floating point: GLfloat
`d – 64 bit floating point GLdouble
`glVertex2f(GLfloat x, GLfloat y) vs. glVertex2i(GLint x, GLint y)



9

OpenGL Command Syntax

aA number in the suffix specifies number of 
parameters accepted: 
a‘v’ specifies that this variant accepts an 

array or pointer as parameter:
` glVertex2i(GLint x, GLint y)  vs.   

glVertex3i(GLint x, GLint y, GLint z)
`glVertex4dv(GLdouble[4] vector) - one array 

of doubles of length of 4.

OpenGL as a State Machine

a OpenGL is a state machine, therefore many of its 
commands change inner states such as color and other 
drawing modes.

a glClear(<buffer_const>) - clears the buffer indicated 
by the const argument:
`GL_COLOR_BUFFER_BIT - for color buffer(RGBA)
`GL_DEPTH_BUFFER_BIT - for depth buffer
`GL_ACCUM_BUFFER_BIT - for accumulation buffer
`GL_STENCIL_BUFFER_BIT - for stencil buffer

a glClearColor(double red, double green, double blue, 
double alpha) -sets the clear color (0.0 - 1.0).

a glClearDepth(double depth) - sets the depth value.



10

OpenGL as a State Machine

a OpenGL is a state machine
a You put it in a certain state

`Remains in effect until state is changed

a Example: glColor() sets current drawing color. 
`Once called all shapes will be drawn using this color
`Until next call of glColor

a More states: current transformation, viewing and 
projection parameters, lighting parameters, line width

a Many states are either enabled or disabled. 
`glEnable()
`glDisable()

OpenGL - Drawing Geometric 
Primitives

a glColor{34}{b s i f d ub us ui}[v](...) sets drawing color 
(in RGBA mode). Colors are defined by a combination 
of Red, Green and Blue intensity components (and alpha 
channel). 

a Examples:
`glColor3f(1.0, 0.0, 0.0) ; defines Red color
`glColor3f(0.5, 0.5, 0.5) ; defines Grey color
`glColor3ub(0, 255, 0) ; defines Green color
`glColor3dv(c) ; whereas c is - double c[3] ;

a Colors input range are type dependent (see OpenGL 
programming guide V1.2 page 168)



11

OpenGL - Drawing Geometric 
Primitives

aglBegin(GLenum mode) 
`Starts the vertex drawing mode

aglEnd() - Marks the end of vertex-data list.
aglFlush()  Forces previously issued OpenGL 

commands to begin execution.
aglFinish() Forces all previously issued OpenGL 

commands to complete. This command doesn’t 
return until all previous commands are fully 
realized.

OpenGL - Drawing Geometric 
Primitives

a glBegin(GLenum mode) sets the type of primitive 
OpenGL will interpret the next vertices list:



12

OpenGL - Drawing Geometric 
Primitives

aglVertex{234}{sifd}[v](coords) this 
command specifies a vertex, example:
`glVertex2f(100.0,50.0) ;
`glVertex3iv(vector) ;  whereas v is int v[3].

aglVertex2XX sets the third coordinate to 
be 0 and the fourth to be 1.0, 
glVertex3XX sets the fourth coordinate to 
be 1.0

OpenGL - Drawing Geometric 
Primitives

aExample code:
⌧glClearColor(0.0, 0.0, 0.0, 0.0) ;
⌧glClear(GL_COLOR_BUFFER_BIT) ;
⌧glColor3f(1.0, 0.0, 0.0) ;                   /* red color */
⌧glBegin(GL_TRIANGLES) ;
⌧glVertex2f(0.0, 0.0) ; glVertex2f(1.0, 0.0) ; glVertex2f(1.0, 1.0) ; 
⌧glEnd() ;
⌧glColor3f(0.0, 1.0, 0.0) ;                   /* green color */
⌧glBegin(GL_LINES) ;
⌧glVertex2f(0.0, 0.5) ; glVertex2f(1.0, 0.5) ;                   Result:
⌧glEnd() ;
⌧glFlush() ;



13

OpenGL - 2D Viewing 
Transformation

a2D Coordinate System specification:
aWhere will a given vertex be mapped on 

the screen?

aThinking the question over we should be 
able to specify which rectangle in 
“vertices” coords. sys. will be mapped to 
the screen

OpenGL - 2D Viewing 
Transformation

aThis is done by the next four commands:
`glViewport(u1, v1, u2, v2) ;
`glMatrixMode(GL_PROJECTION) ;
`glLoadIdentity() ;
`gluOrtho2D(x1, x2, y1, y2) ;

aThe above four lines maps the 
rectangle(x1, y1, x2, y2) in the “vertices”
coords. sys. to the (u1, v1, u2, v2) in the 
window.



14

OpenGL - 2D Viewing 
Transformation

aThat is:

a gluOrtho2D performs parallel projection of a rectangle in 
the “vertices” coordinate system to a canonical square
in the interval -1,1. The axis of projection is the Z-axis 
(the third coord in glVertex)

a glViewport maps this canonical square to the given 
windows coordinates.

(u1,v1)

(u2,v2)

(x1,y1)

(x2,y2)

OpenGL - 2D Viewing 
Transformation

gluOrtho2D glViewport

x

y

z


