Computer Graphics Course 2005

Arcball User Interface Background for ex2

Arcball User Interface

Motivation: UI for intuitive rotation of 3D objects using the mouse

Problem: mouse coordinate are in 2D
\&Solution: assign 3D coordinate to each 2D screen coordinate

Arcball UI

1. Each 2D point is mapped to a point on a (hemi)sphere located at the center of the screen
2. 2 D mouse motion translated to 3D motion on the sphere
3. Rotation angle and axis extracted from motion on the sphere

Arcball UI: Mapping to Sphere

1. Mapping to Sphere

$$
(x, y) \alpha\left\{\begin{array}{cc}
(x, y, 0) \quad \text { in case } \sqrt{\mathrm{x}^{2}+y^{2}}>R \\
\left(x, y, \sqrt{R^{2}-\mathrm{x}^{2}-y^{2}}\right) & \text { otherwise }
\end{array}\right.
$$

$\mathscr{H} x, y$: screen coordinates with the ball centered at the origin with radius R

2. Moving on the arcball

Rotation axis + angle are both easy to calculate from the two vectors.

Screen view and events:

Arcball interpretation:

3. Extracting rotation parameters

\&Rotation axis: is the vector normal to the plane spanned by the two mouse vectors. $\triangle R=m 1 \times m 2$
Rotation angle is the angle between those two vectors.
$\triangle \mathrm{a}=2 * \operatorname{acos}(\mathrm{~m} 1 * \mathrm{~m} 2)$

Arcball UI

Apparently, it is more natural to use twice the angle given from the arcball for the rotation.
$\theta / 2$
θ

\longrightarrow

Arcball Property

HTwo combined arcs are equal to the arc beginning with the first arcs beginning point and ending with the second arc ending point.
\&Rotation depends solely on the beginning and ending points

Figure 2. Arc combination

