
Radiosity Radiosity
Motivation: what is missing in ray-traced images?

Indirect illumination effects
Color bleeding
Soft shadows

Radiosity is a physically-based illumination algorithm capable 
of simulating the above phenomena in a scene made of ideal 
diffuse surfaces. 

Books:
Cohen and Wallace, Radiosity and Realistic Image Synthesis, 
Academic Press Professional 1993.
Sillion and Puech, Radiosity and Global Illumination, Morgan-
Kaufmann, 1994.

Radiosity in a Nutshell

Break surfaces into many small elements

Formulate and solve a linear system of equations 
that models the equilibrium of inter-reflected 
light in a scene.

The solution gives us the amount of light leaving 
each point on each surface in the scene.

Once solution is computed, the shaded elements 
can be quickly rendered from any viewpoint.

Radiometric quantities

Radiant energy [J]

Radiant power (flux): radiant energy per second [W]

Irradiance (flux density): incident radiant power per 
unit area [W/m2]

Radiosity (flux density): outgoing radiant power per 
unit area [W/m2]

Radiance (angular flux density): radiant power per 
unit projected area per unit solid angle [W/(m2 sr)]



Solid Angles (1)

When defining various radiometric quantities, we 
need to be able to quantify sets of directions.
In 2D:

directions are points on the unit circle;
a simply connected set  of directions is an arc, whose size 
corresponds to an angle [radians];

In 3D:
directions are points on the unit sphere;
a simply connected set of directions is an area on the 
sphere, whose size corresponds to a solid angle;
solid angles are measured in steradians.

Solid Angles (2)

Consider the spherical coordinates (r,θ,φ) of a point on the 
sphere. What is the area of a differential surface element 
at this point?

Differential solid angle:

φθθφθθ ddrdrdrdA sin)sin)(( 2==

φθθω dd
r
dAd sin2 ==

The Radiosity Equation (1)

Assume that surfaces in the scene have been 
discretized into n small elements.
Assume that each element emits/reflects light 
uniformly across its surface.
Define the radiosity B  as the total hemispherical 
flux density (W/m2) leaving a surface.
Let’s write down an expression describing the 
total flux (light power) leaving element i in the 
scene:

total flux = emitted flux + reflected flux

The Radiosity Equation (2)

Total flux leaving element i:
Total flux emitted by element i:
Total reflected flux:

(reflectance of element i)*(the total incoming flux)
total incoming flux = sum of contributions from all other 
elements in the scene

The full radiosity equation is then:
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The Form Factor

The form factor Fji tells us how much of the flux 
leaving element j actually reaches element i.
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Properties of Form Factors

Reciprocity: 

Additivity:

Conservation of energy in a closed environment:
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The Radiosity Equation (3)

The radiosity equation

Divide equation by Ai:

Apply form-factor reciprocity:

We can write this using matrix notation:
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Finally...

A linear system of n equations in n unknowns:
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The Radiosity Method

Take as input a geometric model of the scene, with 
emission and reflection properties of each surface
Step 1 - Meshing: Discretize input surfaces into a 
mesh of small elements
Step 2 - Setup: Compute the form factors Fij

Step 3 - Solution: Solve the resulting linear 
system of equations
Step 4 - Display: Render shaded elements from 
any desired view point.
These steps are often interleaved in practice.

Examples:

Examples: Examples:



Solving the Equation

The naive approach - Gaussian elimination
Requires O(n2) memory to store the matrix
Requires O(n3) time to solve the equation

A better approach - iterative solution
Jacobi iteration
Gauss-Seidel iteration
Southwell relaxation (known as Progressive Radiosity)

Due to special properties of the radiosity matrix, it is 
possible to prove that these iterative methods are 
guaranteed to converge to the correct solution.

Gauss-Seidel Iteration

Start with an initial guess: for all i
Repeatedly compute the radiosities according to the 
following formula:

The physical analogy: Each element is “gathering”, in turn, 
light from all other elements.
This iteration is guaranteed to converge from any initial 
guess, because the matrix is strictly diagonally dominant.
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Progressive Radiosity (1)

While not converged:
Select one element in the scene as the current light source
“Shoot” radiosity from the light source to the rest of the scene

The solution process mimics the physical process of light 
propagation in the scene.
Must take care not to shoot the same light more than once 
(keep track of “unshot radiosity”)

B[i] = Unshot[i] = E[i]
while (not converged) {

Choose i with largest Unshot[i]*A[i]
Shoot(i)

}

Progressive Radiosity (2)

Shoot(i):
for j = 1..n {

Compute the form factor FF[i,j]
Delta[j] = ρ[j] FF[i,j] Unshot[i] A[i]/A[j]
B[j] += Delta[j]
Unshot[j] += Delta[j]

}
Unshot[i] = 0 

B[i] = Unshot[i] = E[i]
while (not converged) {

Choose i with largest Unshot[i]*A[i]
Shoot(i)

}



Progressive Radiosity (3)

In each iteration the algorithm computes n form factors on 
the fly, removing the O(n2) storage complexity.

Choosing the “brightest” shooter at each iteration makes 
the solution to converge rapidly during the first iterations.

It is possible to display the solution after each iteration, 
resulting in a progressive sequence of images.

Typically, there is no need to run until complete convergence. 
The process can be stopped after relatively few iterations.

Progressive Radiosity Example:      
0, 8, 16, 25, 50, 100 iterations

The Ambient Correction

In order to avoid too dark an image during the first PR 
iterations, an ambient correction term is used.
Compute the average reflectivity in the scene:

Define the “overall reflection factor” as:

At each iteration the ambient term is set to:
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Progressive Radiosity +  Ambient      
0, 8, 16, 25, 50, 100 iterations



Adaptive Mesh Refinement

Start with a coarse mesh of elements.
During the solution process, subdivide regions in 
which the radiosity gradient is above a certain 
threshold.

Advantage: creates more elements only where 
necessary.
Disadvantage: might miss important features 
altogether.

Progressive Radiosity with Adaptive 
Meshing (0,8,16,50,100)

Form-Factor Computation (1)

Analytic as well as approximate formulas exist for various 
configurations.
A closed form expression for a form factor between two 
polygons (Schroeder 93):

extremely complicated formula
does not take into account occlusion

A common approximation is to assume that the inner integral 
is constant for all locations x in element i:
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Form-Factor Computation (2)

The remaining integral is approximated as a finite sum:

This approximation works well so long as the elements i and j 
are well-separated from each other (the distance between 
them is large relative to their sizes)
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Nusselt’s Analogue The Hemi-Cube Algorithm 
(Cohen - Greenberg 85)


