Radiosity

Radiosity

- Motivation: what is missing in ray-traced images?
- Indirect illumination effects
- Color bleeding
- Soft shadows
- Radiosity is a physically-based illumination algorithm capable of simulating the above phenomena in a scene made of ideal diffuse surfaces.
- Books:
- Cohen and Wallace, Radiosity and Realistic Image Synthesis, Academic Press Professional 1993.
- Sillion and Puech, Radiosity and Global Illumination, MorganKaufmann, 1994.

Radiosity in a Nutshell

- Break surfaces into many small elements
- Formulate and solve a linear system of equations that models the equilibrium of inter-reflected light in a scene.
- The solution gives us the amount of light leaving each point on each surface in the scene.
- Once solution is computed, the shaded elements can be quickly rendered from any viewpoint.

Radiometric quantities

- Radiant energy [J]
- Radiant power (flux): radiant energy per second [W]
- Irradiance (flux density): incident radiant power per unit area [W/m²]
- Radiosity (flux density): outgoing radiant power per unit area [W/m²]
- Radiance (angular flux density): radiant power per unit projected area per unit solid angle [W/(m^{2} sr)]

Solid Angles (1)

- When defining various radiometric quantities, we need to be able to quantify sets of directions.
- In 2D:
- directions are points on the unit circle;
- a simply connected set of directions is an arc, whose size corresponds to an angle [radians];
- In 3D:
- directions are points on the unit sphere;
- a simply connected set of directions is an area on the sphere, whose size corresponds to a solid angle;
- solid angles are measured in steradians.

Solid Angles (2)

- Consider the spherical coordinates (r, θ, ϕ) of a point on the sphere. What is the area of a differential surface element at this point?

$$
d A=(r d \theta)(r \sin \theta d \phi)=r^{2} \sin \theta d \theta d \phi
$$

- Differential solid angle:

$$
d \omega=\frac{d A}{r^{2}}=\sin \theta d \theta d \phi
$$

The Radiosity Equation (1)

- Assume that surfaces in the scene have been discretized into n small elements.
- Assume that each element emits/reflects light uniformly across its surface.
- Define the radiosity B as the total hemispherical flux density ($\mathrm{W} / \mathrm{m}^{2}$) leaving a surface.
- Let's write down an expression describing the total flux (light power) leaving element i in the scene:
total flux $=$ emitted flux + reflected flux

The Radiosity Equation (2)

- Total flux leaving element i: $B_{i} A_{i}$
- Total flux emitted by element i: $E_{i} A_{i}$
- Total reflected flux:
- (reflectance of element $i)^{\star}($ the total incoming flux)
- total incoming flux = sum of contributions from all other elements in the scene

$$
\rho_{i} \sum_{j} B_{j} A_{j} F_{j i}
$$

- The full radiosity equation is then:

$$
B_{i} A_{i}=E_{i} A_{i}+\rho_{i} \sum_{j=1}^{n} B_{j} A_{j} F_{j i}
$$

The Form Factor

- The form factor $F_{i j}$ tells us how much of the flux leaving element i actually reaches element j.

$$
F_{i j}=\frac{1}{A_{i}} \int_{x \in A_{i}} \int_{y \in A_{j}} \frac{\cos \theta_{x} \cos \theta_{y}}{\pi\|x-y\|^{2}} V(x, y) d A_{x} d A_{y}
$$

Properties of Form Factors

- Reciprocity: $\quad A_{i} F_{i j}=A_{j} F_{j i}$
- Additivity: $\quad F_{i(j u k)}=F_{i j}+F_{i k}$
- Conservation of energy in a closed environment:

$$
\sum_{j=1}^{n} F_{i j}=1
$$

The Radiosity Equation (3)

- The radiosity equation
$B_{i} A_{i}=E_{i} A_{i}+\rho_{i} \sum_{j=1}^{n} B_{j} A_{j} F_{j i}$
- Divide equation by A_{i} :

$$
B_{i}=E_{i}+\rho_{i} \sum_{j=1}^{n} B_{j} \frac{A_{j}}{A_{i}} F_{j i}
$$

- Apply form-factor reciprocity:

$$
B_{i}=E_{i}+\rho_{i} \sum_{j=1}^{n} B_{j} F_{i j}
$$

- We can write this using matrix notation:
$\left[\begin{array}{c}B_{1} \\ \vdots \\ B_{n}\end{array}\right]=\left[\begin{array}{c}E_{1} \\ \vdots \\ E_{n}\end{array}\right]+\left[\begin{array}{l} \\ \\ \\ \vdots \\ B_{n}\end{array}\right]$

Finally...

- A linear system of n equations in n unknowns:

$$
\left[\begin{array}{cccc}
1-\rho_{1} F_{11} & -\rho_{1} F_{12} & \cdots & -\rho_{1} F_{1 n} \\
-\rho_{2} F_{21} & 1-\rho_{2} F_{22} & & \vdots \\
\vdots & & \ddots & \vdots \\
-\rho_{n} F_{n 1} & \cdots & \cdots & 1-\rho_{n} F_{n n}
\end{array}\right]\left[\begin{array}{c}
B_{1} \\
B_{2} \\
\vdots \\
B_{n}
\end{array}\right]=\left[\begin{array}{c}
E_{1} \\
E_{2} \\
\vdots \\
E_{n}
\end{array}\right]
$$

The Radiosity Method

- Take as input a geometric model of the scene, with emission and reflection properties of each surface
- Step 1 - Meshing: Discretize input surfaces into a mesh of small elements
- Step 2 - Setup: Compute the form factors F_{ij}
- Step 3 - Solution: Solve the resulting linear system of equations
- Step 4 - Display: Render shaded elements from any desired view point.
- These steps are often interleaved in practice.

Examples:

Examples:

Solving the Equation

- The naive approach - Gaussian elimination
- Requires $O\left(n^{2}\right)$ memory to store the matrix
- Requires $O\left(n^{3}\right)$ time to solve the equation
- A better approach - iterative solution
- Jacobi iteration
- Gauss-Seidel iteration
- Southwell relaxation (known as Progressive Radiosity)
- Due to special properties of the radiosity matrix, it is possible to prove that these iterative methods are guaranteed to converge to the correct solution.

Gauss-Seidel Iteration

- Start with an initial guess: for all i $B_{i}^{(0)}=E_{i}$
- Repeatedly compute the radiosities according to the following formula:

$$
B_{i}^{(k)}=\frac{1}{M_{i i}}\left(E_{i}-\sum_{j=1}^{i-1} M_{i j} B_{j}^{(k)}-\sum_{j=i+1}^{N} M_{i j} B_{j}^{(k-1)}\right)
$$

- The physical analogy: Each element is "gathering", in turn, light from all other elements.
- This iteration is guaranteed to converge from any initial guess, because the matrix is strictly diagonally dominant.

Progressive Radiosity (1)

- While not converged:
- Select one element in the scene as the current light source
- "Shoot" radiosity from the light source to the rest of the scene
- The solution process mimics the physical process of light propagation in the scene.
- Must take care not to shoot the same light more than once (keep track of "unshot radiosity")

```
B[i] = Unshot[i] = E[i]
while (not converged) {
    Choose i with largest Unshot[i]*A[i]
    Shoot(i)
}
```


Progressive Radiosity (2)

```
B[i] = Unshot[i] = E[i]
while (not converged) {
    Choose i with largest Unshot[i]*A[i]
    Shoot(i)
}
```

Shoot (i):
for $\mathrm{j}=1 . \mathrm{n}$ \{
Compute the form factor $\operatorname{FF}[i, j]$
Delta[j] = $\rho[j]$ FF[i,j] Unshot[i] A[i]/A[j]
B[j] += Delta[j]
Unshot[j] += Delta[j]
\}
Unshot[i] = 0

Progressive Radiosity (3)

- In each iteration the algorithm computes n form factors on the fly, removing the $O\left(n^{2}\right)$ storage complexity.
- Choosing the "brightest" shooter at each iteration makes the solution to converge rapidly during the first iterations.
- It is possible to display the solution after each iteration, resulting in a progressive sequence of images.
- Typically, there is no need to run until complete convergence. The process can be stopped after relatively few iterations.

Progressive Radiosity Example: $0,8,16,25,50,100$ iterations

The Ambient Correction

- In order to avoid too dark an image during the first PR iterations, an ambient correction term is used.
- Compute the average reflectivity in the scene:

$$
\rho_{\text {ave }}=\sum \rho_{i} A_{i} / \sum A_{i}
$$

- Define the "overall reflection factor" as:

$$
R=1+\rho_{\text {ave }}+\rho_{\text {ave }}^{2}+\rho_{\text {ave }}^{3}+\ldots=\frac{1}{1-\rho_{\text {ave }}}
$$

- At each iteration the ambient term is set to:

$$
\text { Ambient }=R\left(\sum \text { Unshot }_{i} A_{i}\right) / \sum A_{i}
$$

Progressive Radiosity + Ambient 0, 8, 16, 25,50, 100 iterations

Adaptive Mesh Refinement

- Start with a coarse mesh of elements.
- During the solution process, subdivide regions in which the radiosity gradient is above a certain threshold.
- Advantage: creates more elements only where necessary.
- Disadvantage: might miss important features altogether.

Progressive Radiosity with Adaptive Meshing $(0,8,16,50,100)$

Form-Factor Computation (1)

- Analytic as well as approximate formulas exist for various configurations.
- A closed form expression for a form factor between two polygons (Schroeder 93):
- extremely complicated formula
- does not take into account occlusion
- A common approximation is to assume that the inner integral is constant for all locations x in element i :

$$
\begin{aligned}
F_{i j} & =\frac{1}{A_{i}} \int_{x \in A_{i}} \int_{y \in A_{j}} \frac{\cos \theta_{x} \cos \theta_{y}}{\pi r^{2}} V(x, y) d A_{x} d A_{y} \\
& \approx \int_{y \in A_{j}} \frac{\cos \theta_{x} \cos \theta_{y}}{\pi r^{2}} V(x, y) d A_{y}
\end{aligned}
$$

Form-Factor Computation (2)

- The remaining integral is approximated as a finite sum:

$$
\begin{aligned}
F_{i j} & \approx \int_{y \in A_{j}} \frac{\cos \theta_{x} \cos \theta_{y}}{\pi r^{2}} V(x, y) d A_{y} \\
& \approx \sum \frac{\cos \theta_{x} \cos \theta_{y}}{\pi r^{2}} V(x, y) \Delta A_{y}
\end{aligned}
$$

- This approximation works well so long as the elements i and j are well-separated from each other (the distance between them is large relative to their sizes)

Nusselt's Analogue

Fig. 16.66 Determining the form factor between a differential area and a patch using Nusselt's method. The ratio of the area projected onto the hemisphere's base to the area of the entire base is the form factor. (After [SIEG81].)

Fig. 16.67 The hemicube is the upper half of a cube centered about the patch. (After [COHE85].)

