CSG: Constructive Solid Geometry

Solid Geometry

- So far, we have represented 3D objects by specifying their boundary: this is called Boundary Representation, or B-Rep.
- Sometimes we need to represent objects explicitly as solids.
- CSG represents solid objects by consructing them from solid primitives using boolean operations.

CSG

♦ Primitives:

- Plane (half-space)
- ◆ Boxes, spheres, cones, cylinders, ...
- ♦ Affine transformations:
 - To modify canonical primitives
 - \blacklozenge To get the primitives where we want them
- ♦ Boolean operations:
 - \blacklozenge Union (), Intersection (), Difference ()

CSG Graph

 The primitives, affine transformations, and boolean operators are arranged as a DAG: Directed Acyclic Graph:

Point Membership Classification

- PMC query: given a solid S and a point p, does p belong to S?
- PMC(CSGnode A, Point p) If PrimitiveNode(A) return A.DirectPMC(p) If AffineNode(A) { T = A.GetMatrix(); Return PMC(A.GetChild(), T⁻¹(p)) } Left = PMC(A.GetLeftChild(), p) Right = PMC(A.GetLeftChild(), p) If Intersection(A) return IntersectionTable(Left, Right) If Union(A) return UnionTable(Left, Right) If Difference(A) return DifferenceTable(Left, Right)

Example: Intersection Table

	In	Out	On
In	In	Out	On
Out	Out	Out	Out
On	On	Out	?

Regular Sets

- "Real" solids correspond to regular sets:
 A = closure(interior(A))
- To ensure that the result of a boolean operation on two solids is a solid, we "regularize" the result:

A op* B = closure(interior(A op B)) for op $\in \{\cup, \cap, \setminus\}$