
Curves & Surfaces

So far, we have worked with polygonal objects. 
How do we represent and manipulate more 
general surfaces?

Goals:
Compact representation
Intuitive control
Guaranteed smoothness

The de Casteljau Algorithm

Goal: a simple and intuitive mechanism for defining 
and manipulating the shape of a curve.
De Casteljau: Given a sequence of control points (a 
control polygon) define a smooth approximating 
curve by repeated linear interpolation.
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Closed-form expression (3 pts)
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The curve is a quadratic polynomial in t!
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Generalization to n+1 points

Given control points: 

For any parameter value t, compute:

The curve C(t) is given by 
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Closed-form expression

The curve defined by the de Casteljau 
algorithm is a polynomial of degree n:

These curves are commonly known as 
“Bezier curves”
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Bernstein Polynomials

Bernstein polynomials of degree n:

Bezier curve of degree n (defined by n+1 
control points                    ):
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Bernstein Polynomials

Recursive definition:

with

Important property (partition of unity):
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Properties of Bezier Curves

Affine invariance
Convex hull property
Endpoint interpolation
Symmetry
Invariance under affine combinations
Pseudo-local control
Variation diminishing property



Derivatives

The derivative of a Bezier curve:

As a result:
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Matrix Notation

Any polynomial of degree n can be written as a 
scalar product:

Example: for Bernstein polynomials of degree 3 we 
have 4 row vectors of coefficients:
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Matrix Notation (continued)

So, we can write a cubic Bezier curve as:

Or, in general, for degree n:
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Hermite Curves

A cubic curve that interpolates two points with 
given tangent vectors:

is given by:
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Changing Representations

Suppose we’re given the Hermite control points of 
a cubic curve and we want to convert them to 
Bezier control points:
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Piecewise Curves

How do we construct and manipulate 
complex curves?

Use a Bezier curve with many control points 
high degree.
Construct a complex curve by joining several 
low-degree curves.

How do we smoothly connect two Bezier 
curves?

Curve Smoothness

Parametric smoothness: a curve is Ck continuous 
(over a parametric interval [a,b]) if it’s 
continuously differentiable k times for every point 
(in [a,b]).

Examples:
C-1 curves are discontinuous
C0 curves: continuous, but not smooth
C1 curves: smooth (continous 1st derivative)
C2 curves: smoother
Etc.

Piecewise Cubic Bezier Curve

A sequence of cubic Bezier curves, joined 
together such that the curve and the 1st

derivative are continuous: the curve is C1!



Tensor-Product Surfaces

Parametric surfaces:

The Bernstein-Bezier “tensor product”
surfaces:
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Properties of Bezier Surfaces

Most properties of Bezier curves still hold:
Affine invariance
Convex hull property
Corner interpolation

Boundaries are Bezier curves.
Corner derivatives: ( )
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Corner Tangent Planes



Connecting Patches Smoothly

To ensure continuity (C0) across boundary, the 
boundary control points must coincide.

How do we ensure C1 continuity across boundaries?


