
Curves & Surfaces

So far, we have worked with polygonal objects.
How do we represent and manipulate more
general surfaces?

Goals:
Compact representation
Intuitive control
Guaranteed smoothness

The de Casteljau Algorithm

Goal: a simple and intuitive mechanism for defining
and manipulating the shape of a curve.
De Casteljau: Given a sequence of control points (a
control polygon) define a smooth approximating
curve by repeated linear interpolation.

0b

1b

2b1
0b

1
1b

2
0b

Closed-form expression (3 pts)

1
1

1
0

2
0

21
1
1

10
1
0

)1()(

)1()(

)1()(

tbbttb
tbbttb
tbbttb

+−=

+−=

+−=

() 2
2

10
2

2110
2
0

)1(21

])1[(])1)[(1()()(

btbttbt

tbbtttbbtttbtC

+−+−=

+−++−−==

The curve is a quadratic polynomial in t!

0b

1b

2b1
0b

1
1b

2
0b

Generalization to n+1 points

Given control points:

For any parameter value t, compute:

The curve C(t) is given by

nrtbbttb r
i

r
i

r
i ,...,1,)1()(1

1
1 =+−= −

+
−

)()(0 tbtC n=

00
1

0
0 ,,, nbbb …

Closed-form expression

The curve defined by the de Casteljau
algorithm is a polynomial of degree n:

These curves are commonly known as
“Bezier curves”

() i
ini

n

i
btt

i
n

tC −

=

−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
=∑ 1)(

0

Bernstein Polynomials

Bernstein polynomials of degree n:

Bezier curve of degree n (defined by n+1
control points):

()
⎪⎩

⎪
⎨
⎧ ≤≤

−=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
= −

else0

0if
)!(!

!
where1)(ni

ini
n

i
n

tt
i
n

tB inin
i

∑
=

=
n

i
i

n
i btBtC

0
)()(

00
1

0
0 ,,, nbbb …

Bernstein Polynomials

Recursive definition:

with

Important property (partition of unity):

)()()1()(1
1

1 tBttBttB n
i

n
i

n
i

−
−

− +−=

},,0{0)(

1)(0
0

njfortB
tB

n
j …∉≡

≡

1)(
0

=∑
=

n

j

n
j tB

Properties of Bezier Curves

Affine invariance
Convex hull property
Endpoint interpolation
Symmetry
Invariance under affine combinations
Pseudo-local control
Variation diminishing property

Derivatives

The derivative of a Bezier curve:

As a result:

()∑
−

=

−
+ −=

1

0

1
1)()(

n

j

n
jjj tBbbntC

dt
d

()

()1
1

01
0

−
=

=

−=

−=

nn
t

t

bbn
dt
dC

bbn
dt
dC

Matrix Notation

Any polynomial of degree n can be written as a
scalar product:

Example: for Bernstein polynomials of degree 3 we
have 4 row vectors of coefficients:

[]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=+++

n

n
n

n

t

t
aaatataa …

1

,,, 1010

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−−

1000
3300

3630
1331

Matrix Notation (continued)

So, we can write a cubic Bezier curve as:

Or, in general, for degree n:

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−−−

⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡
=

3

2

3210

3210

3210

1

1000
3300

3630
1331

)(

t
t
t

bbbb
bbbb
bbbb

tC

zzzz

yyyy

xxxx

[]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

n

n

t

t
MtC

1

)(Bezier10 bbb

Hermite Curves

A cubic curve that interpolates two points with
given tangent vectors:

is given by:

1P 4P

1R

4R

() () () () 4
23

1
23

4
23

1
23 232132)(RttRtttPttPtttC −++−++−++−=

[]
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

1100
1210
2300

2301

where

1

)(Hermite

3

2Hermite4141 M

t
t
t

MRRPPtC

Changing Representations

Suppose we’re given the Hermite control points of
a cubic curve and we want to convert them to
Bezier control points:

TMGTMGtC HermiteHermiteBezierBezier)(==

HermiteHermiteBezierBezier MGMG =
1

BezierHermiteHermiteBezier
−= MMGG

Piecewise Curves

How do we construct and manipulate
complex curves?

Use a Bezier curve with many control points
high degree.
Construct a complex curve by joining several
low-degree curves.

How do we smoothly connect two Bezier
curves?

Curve Smoothness

Parametric smoothness: a curve is Ck continuous
(over a parametric interval [a,b]) if it’s
continuously differentiable k times for every point
(in [a,b]).

Examples:
C-1 curves are discontinuous
C0 curves: continuous, but not smooth
C1 curves: smooth (continous 1st derivative)
C2 curves: smoother
Etc.

Piecewise Cubic Bezier Curve

A sequence of cubic Bezier curves, joined
together such that the curve and the 1st

derivative are continuous: the curve is C1!

Tensor-Product Surfaces

Parametric surfaces:

The Bernstein-Bezier “tensor product”
surfaces:

∑∑
= =

=
n

i

m

j
ji

m
j

n
i bvBuBvuS

0 0
)()(),(

[]
⎪
⎩

⎪
⎨

⎧
=→

),(
),(
),(

),(E1,0:),(32

vuS
vuS
vuS

vuSvuS

z

y

x

Control Mesh

00b

01b 02b

03b

10b

20b

30b

33b

uv

Properties of Bezier Surfaces

Most properties of Bezier curves still hold:
Affine invariance
Convex hull property
Corner interpolation

Boundaries are Bezier curves.
Corner derivatives: ()

()0010)0,0(

0001)0,0(

|
|

),(

),(

bbm
v

vuS

bbn
u

vuS

−=
∂

∂

−=
∂

∂

Corner Tangent Planes

Connecting Patches Smoothly

To ensure continuity (C0) across boundary, the
boundary control points must coincide.

How do we ensure C1 continuity across boundaries?

