Introduction to:

- The physical nature of color.
- The perception of color.
- Color matching and reproduction.
- Common color spaces.

$\sim 400 \mathrm{~nm}$

Typical spectral energy distribution of a light:

What is color to a human?

- Color is our perceptual sensation of light in the visible range ($\sim 400 . .700 \mathrm{~nm}$) incident upon the retina.

$$
\begin{aligned}
& \operatorname{red}(C)=\int_{\lambda \min }^{\lambda \max } S_{1}(\lambda) C(\lambda) d \lambda \\
& \operatorname{green}(C)=\int_{\lambda \text { min }}^{\lambda \max } S_{2}(\lambda) C(\lambda) d \lambda \\
& \operatorname{blue}(C)=\int_{\lambda \min }^{\lambda \max } S_{3}(\lambda) C(\lambda) d \lambda
\end{aligned}
$$

*-Metamer and Color Matching

- Two light sources (emitting or reflecting) with spectral energy densities of C_{1} and C_{2} will have the same perceived color if:

```
\bullet\operatorname{Red}(\mp@subsup{C}{1}{})=\operatorname{Red}(\mp@subsup{C}{2}{})
\(-\operatorname{Green}\left(C_{1}\right)=\operatorname{Green}\left(C_{2}\right)\)
\(-B / u e\left(C_{1}\right)=B \operatorname{lue}\left(C_{2}\right)\)
```

$\bullet C_{1}$ is called a metamer of C_{2}
*- Possible causes of "yellow" perceived color:

-CIE - RGB space.
-CIE - XYZ space.

- HSV space.
$L^{*} a^{\star} b^{\star}$ space.
- YUV, YIQ
-CMY, CMYK

* CIE-RGB Matching Functions:

* The CIE-XYZ Matching Functions:

CIE Chromaticity Diagram

* $L^{*} a^{*} b^{*}$ Space

- Non-linear model.
- More perceptually uniform then CIE-XYZ : ellipses are much closer to circles. As a result, Euclidean distance is useful.
- L* - Lightness.
- a^{*} - Red-green content.
- b* - yellow-blue content.

$$
L^{*} a^{*} b^{*} \text { Space }
$$

$$
\begin{aligned}
& L^{*}=116\left(\frac{Y}{Y_{0}}\right)^{1 / 3}-16 \\
& a^{*}=500\left[\left(\frac{X}{X_{0}}\right)^{1 / 3}-\left(\frac{Y}{Y_{0}}\right)^{1 / 3}\right] \\
& b^{*}=200\left[\left(\frac{Y}{Y_{0}}\right)^{1 / 3}-\left(\frac{Z}{Z_{0}}\right)^{1 / 3}\right]
\end{aligned}
$$

$\mathrm{X}_{0}, \mathrm{Y}_{0}, \mathrm{Z}_{0}$ are reference white tri-stimulus values.

* Hardware-Oriented Color
\bullet RGB - mainly for use with color CRT and LCD monitors
- YIQ - for use in the broadcast TV (NTSC) color system
- CMY(K) - used in many color printers

- There is a linear transformation (3×3 matrix) to convert between RGB and XYZ

RGB to XYZ conversion

$$
\left[\begin{array}{c}
X \\
Y \\
Z
\end{array}\right]=\left[\begin{array}{lll}
x_{r} C_{r} & x_{g} C_{g} & x_{b} C_{b} \\
y_{r} C_{r} & y_{g} C_{g} & y_{b} C_{b} \\
z_{r} C_{r} & z_{g} C_{g} & z_{b} C_{b}
\end{array}\right]\left[\begin{array}{c}
R \\
G \\
B
\end{array}\right]
$$

- where x, y, z of r, g, and b are the chromaticities of the red, green, and blue phosphors, and $C_{r}=X_{r}+Y_{r}+Z_{r}$

$$
\begin{aligned}
C_{g} & =X_{g}+Y_{g}+Z_{g} \\
C_{b} & =X_{b}+Y_{b}+Z_{b}
\end{aligned}
$$

- Replace as much of the (C, M, Y) color as possible by black ink:
- $K:=\min (C, M, Y)$
- $C:=C-K$
- $M:=M-K$
- $Y:=Y-K$
- The substitution improves contrast, and saves colored ink.

The HSV Color Cone:
The HSV Color Cone

RGB to HSV

- $\operatorname{Min}=\min (r, g, b) ; V=\max (r, g, b)$;
- if $(V>0)$ then $S=(V-M i n) / V$;
- else $\{S=0 ; H=$ Undefined; $\}$
- if $(r==V)$ then $H=(g-b) /(V-M i n)$
- if $(g==V)$ then $H=2+(b-r) /(V-M i n)$
- if $(b==V)$ then $H=4+(r-g) /(V-M i n)$
- $H=H^{*} 60$
- if $(H<0)$ then $H=H+360$

