
1

Viewing in 3D

2

Viewing in 3D

How to specify which part of the 3D world
is to be viewed?

3D viewing volume
How to transform 3D world coordinates to
2D display coordinate?

Projections
Conceptual viewing pipeline:

Project3D clipping Xform to
viewport

Xform to
eye coords

3

Planar Geometric Projections

A projection is formed by the intersection of
certain lines (projectors) with a plane (the
projection plane)
Projectors are lines from the center of projection
through each point on object
Center of projection at infinity results in a parallel
projection
A finite center of projection results in a
perspective projection

4

Taxonomy of Projections

parallel perspective

axonometricmultiview
orthographic

oblique

isometric dimetric trimetric

2 point1 point 3 point

planar geometric projections

5

Parallel Projection

6

Orthographic Projection
Projectors are orthogonal to projection surface, which
is typically parallel to one of the coordinate planes:

7

Axonometric Projections

Allow projection plane
to move relative to
object.
How many angles of a
cube’s corner are equal?

none: trimetric
two: dimetric
three: isometric

8

Axonometric Projections

9

Oblique Projections
Arbitrary relationship between projectors
and projection plane.

10

Perspective Projection

11

Vanishing Points

Parallel lines (not parallel to the projection
plane) on the object converge at a single point
on the projection plane (the vanishing point):

vanishing point

12

N-point Perspective

one-point two-point three-point

13

Orthographic Projections

Direction of projection is normal to the projection
plane.
Typically, project onto one of the coordinate
planes. For example:

Typically, several of these projections (e.g., front,
right, and top/plan views) are shown together

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 1 1

0
1

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

=

⎡

⎣

⎢
⎢
⎢
⎢

⎤

⎦

⎥
⎥
⎥
⎥

x
y
z

x
y

14

Perspective Projection

Z

Y
(x,y,z)

z = d

(x’,y’,d)

z
ydy

z
y

d
y

z
xdx

z
x

d
x

=⇒=

=⇒=

''

''

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=
=
=

⇒

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1

'
'

10100
0100
0010
0001

dzzd
yzyd
xzxd

dz
z
y
x

z
y
x

d

15

Observations

The rank of the matrix is 3 (= projection)
Points on the projection plane are not changed by
the perspective projection
Let’s see what happens to a point at infinity along
the Z axis:

This is a vanishing point

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⇒

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

=

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢

⎣

⎡

1

0
0

1
1
0
0

0
1
0
0

0100
0100
0010
0001

d
dd

16

Taking a Photograph

Arrange objects
Position and point the camera
Choose a lens, set the zoom
Take a picture
Enlarge and crop to get a print

17

Taking a Virtual Photograph

Arrange objects
Apply modeling transformations to objects: change from
object coordinates to world coordinates

Position and point the camera
Position, point, and orient the virtual camera: define a
transformation from world to eye coordinates

Choose a lens, set the zoom
Specify a view volume: define a perspective
transformation that transforms eye coordinates to
canonical normalized viewing space (clip coordinates)

18

Taking a Virtual Photograph

Take a picture
Project objects by applying the perspective
transformation followed by a perspective divide. The
result is normalized device coordinates.

Enlarge and crop to get a print
Apply viewport transformation to obtain actual window
coordinates.

19

The OpenGL Viewing Pipeline

Modelview matrix

object coordinates

eye coordinates

Projection matrix
clip coordinates

Perspective division

normalized device coordinates

Viewport Transformation

window coordinates
20

Modelview Matrix

The initial OpenGL camera is at the origin,
pointing down the negative z-axis.
The modelview matrix is composited from
simple 3D transformations:

glLoadIdentity
glTranslate, glRotate, glScale
glLoadMatrix, glMultMatrix

Camera can also be positioned by the
gluLookAt routine:
gluLookAt(eyex,eyey,eyez,ctrx,ctry,ctrz,upx,upy,upz)

21

Projection Matrix

Specified by defining a view volume (view
frustum):

glFrustum(left, right, bottom, top, near, far)

near
far

22

Projection Matrix

Also can be specified by
gluPerspective(fov, aspect, near, far)

aspect = w/h
fov = vertical field of view angle (degrees)

w

h

near
far

23

Projection Matrix

glFrustum defines the following
perspective transformation matrix:

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−
+

−

−
+

−

−
+

−

0100

200

020

002

nf
fn

nf
nf

bt
bt

bt
n

lr
lr

lr
n

24

Derivation, part I

glFrustum defines a general (possibly
skewed) viewing pyramid. We first make
this pyramid into a canonical one:

We first shear the skewed pyramid, then
scale.

25

Shearing Matrix

Transforms the center of the viewing
window (on the near plane) to (0,0,-n),
making the view pyramid symmetric about
the Z-axis:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

1000
0100

0
2

10

0
2

01

n
bt

n
lr

26

Scaling Matrix

Scale the symmetric pyramid to create a
45 degree angle between each plane and
the Z-axis:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

1000
0100

0020

0002

bt
n

lr
n

27

Derivation, part II

The canonical pyramid is then transformed
into a cube, using a perspective
transformation:

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−
+−

0100

2)(00
0010
0001

nf
fn

nf
nf

28

Finally...

Multiplying the transformations gives us
the desired matrix:

⎥
⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−
+

−

−
+

−

−
+

−

=

=

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

+

+

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

−

⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢

⎣

⎡

−
−

−
−
+−

0100

200

020

002
1000
0100

0
2

10

0
2

01

1000
0100

0020

0002

0100

200
0010
0001

nf
fn

nf
nf

bt
bt

bt
n

lr
lr

lr
n

n
bt

n
lr

bt
n

lr
n

nf
fn

nf
nf

29

The effect on Z

30

View Frustum Clipping

In homogeneous coordinates all points
inside the view frustum satisfy all of the
following inequalities:

Lines must be clipped against the planes:

wzwz
wywy
wxwx

−><
−><
−><

wzwzwywywxwx −==−==−==

andw 0>

31

Viewport Transformation

Defines a pixel rectangle in the window into
which the final image is mapped:

glViewport(x, y, width, height)
(x, y) specify the lower left corner of the
viewport:

(x,y)

width

height
32

Viewport Transformation

Transfroms normalized device (nd)
coordinates to window (w) coordinates.
nd coordinates range in [-1,1]
w coordinates range in [x, x+width],
[y,y+height]
The resulting transformation is:

xwidthxx ndw +⎟
⎠
⎞

⎜
⎝
⎛+=

2
)1(

yheightyy ndw +⎟
⎠
⎞

⎜
⎝
⎛+=

2
)1(

