Viewing in 3D

Viewing in 3D

& How to specify which part of the 3D world
is o be viewed?

3D viewing volume

¢ How to transform 3D world coordinates to
2D display coordinate?
& Projections

Conceptual viewing pipeline:

Xform to
viewport
2

Xform to
eye coords >

3D clipping Project

Planar Geometric Projections

& A projection is formed by the intersection of
certain lines (projectors) with a plane (tAe
projection plane)

Projectors are lines from the center of projection
through each point on object

o Center of projection at infinity results in a paralle/
projection

¢ A finite center of projection results ina
perspective projection

Taxonomy of Projections

planar geometric projections

parallel perspective

! . ‘ 1 point 2 point 3 point
multiview axonometric oblique
orthographic

isometric dimetric trimetric

Parallel Projection Orthographic Projection

& Projectors are orthogonal to projection surface, which
Object is typically parallel to one of the coordinate planes:

\Pro]ecror

DOP

Projection plane

Axonometric Projections

& Allow projection plane
to move relative to
object.

& How many angles of a
cube'’s corner are equal?

& hohe: trimetric
¢ two: dimetric
¢ three: isometric

Obligue Projections

& Arbitrary relationship between projectors
and projection plane.

Projection plane

Perspective Projection

Projector—__

§ Projection plane

COP

10

Vanishing Points

Parallel lines (not parallel to the projection
plane) on the object converge at a single point
on the projection plane (the vanishing point):

N

vanishing point

11

N-point Perspective

= "

il

= <

one-point two-point three-point

12

Orthographic Projections

Direction of projection is normal to the projection
plane.

& Typically, project onto one of the coordinate

Perspective Projection

(xY,2),
Y X' X . xd
—=" = X'="
(x’,y’,d) d z VA

planes. For example: y_y yzﬂ
100 0fx] [x d z 7
0100]y|l |y z=d Z
000 O0fz| |0
000 111! |1 1 0 0 Ofx X xd/z=x'

o Typically, several of these projections (e.g., front, 010 0pyj_|Y — yd/z=y
right, and top/plan views) are shown together 00 1 0z z zd/z=d
0 0 vd 01| |z/d 1
13 14
Observations Taking a Photograph

& The rank of the matrix is 3 (= projection)

Points on the projection plane are not changed by
the perspective projection

Let's see what happens to a point at infinity along
the Z axis:

10 0 ofo] [oO 0
01 0 0fo| |o0 0

= =
00 1 0|1 |1 d
0 0 ¥d 0]o] |vd 1

& This is a vanishing point

15

& Arrange objects

Position and point the camera
Choose a lens, set the zoom

& Take a picture

Enlarge and crop to get a print

16

Taking a Virtual Photograph

& Arrange objects

& Apply modeling transformations to objects: change from
object coordinates to world coordinates

Position and point the camera

Position, point, and orient the virtual camera: define a
transformation from world to eye coordinates

¢ Choose a lens, set the zoom

& Specify a view volume: define a perspective
transformation that transforms eye coordinates to
canonical normalized viewing space (clip coordinates)

17

Taking a Virtual Photograph

& Take a picture

o Project objects by applying the perspective
transformation followed by a perspective divide. The
result is normalized device coordinates.

Enlarge and crop to get a print

Apply viewport transformation to obtain actual window
coordinates.

18

The OpenGL Viewing Pipeline

@ object coordinates

Modelview matrix

{} eye coordinates

Projection matrix

{& clip coordinates

Perspective division

{} normalized device coordinates

Viewport Transformation

{} window coordinates
19

Modelview Matrix

¢ The initial OpenGL camera is at the origin,
pointing down the negative z-axis.

The modelview matrix is composited from
simple 3D transformations:
+ glLoadldentity
+ glTranslate, glRotate, glScale
+ glLoadMatrix, glMultMatrix

& Camera can also be positioned by the
gluLookAt routine:
gluLookAt(eye,.eye,,eye,,ctr,,ctr,,ctr,,up,,up,,up,)

20

Projection Matrix

& Specified by defining a view volume (view
frustum):
glFrustum(left, right, bottom, top, near, far)

near

far

21

Projection Matrix

& Also can be specified by
gluPerspective(fov, aspect, near, far)
& aspect = w/h
o fov = vertical field of view angle (degrees)

near

far
22

Projection Matrix

glFrustum defines the following
perspective fransformation matrix:

2n 0 r+ | 0
r -1 r -1
2n t+ b 0
t—»>b t—»>b
0 0 _f+n - 2 fn
f —n f —n
0 0 -1 0

23

Derivation, part I

glFrustum defines a general (possibly
skewed) viewing pyramid. We first make
this pyramid into a canonical one:

LA

& We first shear the skewed pyramid, then
scale.

24

Shearing Matrix

& Transforms the center of the viewing
window (on the near plane) to (0,0,-n),
making the view pyramid symmetric about

Scaling Matrix

Scale the symmetric pyramid to create a
45 degree angle between each plane and
the Z-axis:

the Z-axis:]]
r+l] Mg g0

2n r—I ,

t+b n
1220 0 00
1 0 0 0O 10
0 1] 1 0 0 1]

Derivation, part IT Finally...

& The canonical pyramid is then transformed

into a cube, using a perspective
transformation:

o O O -

o O +— O

0 0

0 0
—(f+n) -=2fn
f—n f-n

-1 0

27

& Multiplying the transformations gives us
the desired matrix:

1 0 0 0 I 0 0 0|1 o© 5
r - n
0 1 0 0 2n t+b
- 0 0 0|0 1
0 0 _f+n 2 fn P— on
f-n f-n 0 0 1 oflo o 1
0 0 -1 0 0 0 0 1]|0 O 0
2n 0 r+ 1 0
r—1 r—1
2n t+b 0
t-b t-b
0 0 _f+n -2 fn
f —n f-n
0 0 -1 0

= O O

28

The effect on Z

0z-

29

View Frustum Clipping

In homogeneous coordinates all points
inside the view frustum satisfy all of the
following inequalities: x<w Xx>-w

w>0 and y<w y>-w
Z<W Z>-W

Lines must be clipped against the planes:
X=W X=—-W Yy=W y=—W Z=W Z=-W

30

Viewport Transformation

Defines a pixel rectangle in the window into
which the final image is mapped:

glViewport(x, y, width, height)
(x,y) specify the lower left corner of the
viewport:

width

yb1ay

(xy)

31

Viewport Transtformation

¢ Transfroms normalized device (nd)
coordinates to window (w) coordinates.

& nd coordinates range in [-1,1]

& w coordinates range in [x, x+width],
[y,y+height]

The resulting transformation is:

wid;h)+)

V= (X +1)(

X

height)+ y

Vo = e+ 1) "

32

