Geometric Transformations

Geometric Transformations

-Why do we need them?

- Want to define an object in one coordinate system, then place it in another system.
- Allow us to create multiple instances of objects.
- Animation (time-dependent transformations).
- Display using device independent coordinates.
-3D viewing (projections).

Translation

- Translate $(a, b):(x, y) \rightarrow(x+a, y+b)$ set of points:
- Boundary representation: the points form the boundary of the object.
- Solid representation: the points form the interior of the object.
- Question: how can we transform a geometric object in the plane?

Scaling

- Scale(a,b): $\quad(x, y) \rightarrow(a x, b y)$

2/14/2006
Dani Lischinski
5

Rotation

$-\operatorname{Rotate}(\theta):(x, y) \rightarrow(x \cos \theta-y \sin \theta, x \sin \theta+y \cos \theta)$

2/14/2006
Dani Lischinski
6

Matrix Notation

-Let's write a point (x, y) as a column vector of length 2: $\left[\begin{array}{l}x \\ y\end{array}\right]$

- What happens when this vector is multiplied by a 2 by 2 matrix?

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
a x+b y \\
c x+d y
\end{array}\right]
$$

Scaling

- Scale(a,b):

$$
\left[\begin{array}{ll}
a & 0 \\
0 & b
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
a x \\
b y
\end{array}\right]
$$

-What happens when a or bare negative?

Rotation, Shearing

- Rotate(θ):

$$
\left[\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
\cos \theta x-\sin \theta y \\
\sin \theta x+\cos \theta y
\end{array}\right]
$$

- Shear(a,b):

$$
\left[\begin{array}{ll}
1 & a \\
b & 1
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{c}
x+a y \\
b x+y
\end{array}\right]
$$

Reflection

- reflection through the yaxis: $\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$
- reflection through the x axis: $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
- reflection through $y=x . \quad\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
- reflection through $y=-x . \quad\left[\begin{array}{cc}0 & -1 \\ -1 & 0\end{array}\right]$

Combined Transformations

- A sequence of transformations can be collapsed into a single matrix using matrix multiplication:

$$
T_{1} T_{2} T_{3}\left[\begin{array}{l}
x \\
y
\end{array}\right]=T_{1,2,3}\left[\begin{array}{l}
x \\
y
\end{array}\right]
$$

- Is the order of transformations important?

Translation

- Translate $(a, b):\left[\begin{array}{l}x \\ y\end{array}\right] \rightarrow\left[\begin{array}{l}x+a \\ y+b\end{array}\right]$
- Problem: cannot represent translation using 2 by 2 matrices!
-Solution: homogeneous coordinates - use a 3 by 3 linear transformation in a special space: the projective plane.

Homogeneous Coordinates

- A point in the projective plane P^{2} is represented by 3 coordinates, at least one of which is non-zero.
- Two 3-vectors a, b represent the same point in P2 iff $a=h b$, where h is a non-zero scalar.
- A 2D point (x, y) in the Euclidean plane corresponds to the 3 -vectors ($h x$, hy, h) in P^{2}, such as ($x, y, 1$). Note: this is a one-to-many correspondence!
- Geometric interpretation: each point (x, y) corresponds to a ray in 3D, from the origin $(0,0,0)$ through the point $(x, y, 1)$
2/14/2006
Dani Lischinski

Translation

Homogeneous Matrices

- All of the 2D transformations we have seen so far can now be written as follows:

$$
\left[\begin{array}{lll}
a & b & m \\
c & d & n \\
0 & 0 & 1
\end{array}\right]
$$

- What happens when last row is not $[0,0,1]$?

Example 1

- Rotation about an arbitrary point.

Example 2

- Reflection through an arbitrary line

2/14/2006
Dani Lischinski

Affine Transformations: Definition

- Let T: $A_{1} \rightarrow A_{2}$, where A_{1} and A_{2} are affine spaces.
- Then T is said to be an affine transformation if:
- T maps vectors to vectors and points to points
- Tis a linear transformation on vectors
- $T(p+u)=T(p)+T(u)$

Affine Transformations:

 Properties- Affine transformations preserve affine combinations of points. In other words, given an affine transformation T and a point p :

$$
\mathbf{p}=\alpha_{1} \mathbf{p}_{1}+\cdots+\alpha_{k} \mathbf{p}_{k}
$$

it holds that: $\mathbf{T}(\mathbf{p})=\alpha_{1} \mathbf{T}\left(\mathbf{p}_{1}\right)+\cdots+\alpha_{k} T\left(\mathbf{p}_{k}\right)$

- Parallel lines are preserved.
- Intersections between lines are preserved.

2D Transformations (summary)

- Translation, Rotation, Scaling, Reflection, Shearing
- Rigid-body transformations: preserve angles and lengths
- Affine transformations: preserve parallel lines, but not lengths or angles.

The Viewport

- The WC window is mapped onto a device coordinate (DC) viewport:
glViewport(x, y, width, height)

Viewing in 2D

- Objects are given in terms of application dependent world coordinates (WC)
- The world is viewed through a WC window: gluOrtho2D(left, right, bottom, up)

2D Viewing Transformation

- Translate WC window to origin:

Translate(-left, -bottom)

- Scale WC window to match viewport size:

Scale(width/(right - left), height/(top - bottom))

- Translate to position viewport: Translate(x,y)

