Geometric Transformations

Geometric Transformations

¢ Why do we need them?

& Want to define an object in one coordinate
system, then place it in another system.

o Allow us to create multiple instances of
objects.

& Animation (time-dependent transformations).
Display using device independent coordinates.
3D viewing (projections).

2/14/2006 Dani Lischinski

Transformations in 2D

Reminder: we represent a geometric object as a
set of points:

Boundary representation: the points form the boundary
of the object.

Solid representation: the points form the interior of the
object.
Question: how can we transform a geometric
object in the plane?

1 = M

2/14/2006 Dani Lischinski 3

Translation

& Translate(a,b): (X, y) = (x+a,y+b)

Translate(2,3)

 —

2/14/2006 Dani Lischinski

Scaling

Rotation

Scale(a,b): (x,y) = (ax,by) & Rotate(d): (x,y) - (xcos@-ysind,xsind+ycoso)
Scale(2, 1.5) h Rotate(45) T
[| ——— ———
| O
Shearing Matrix Notation
o Shear(a,b): (x,y) = (x+ay,bx+y) & Let's write a point (x,y)as a column vector

7'\

Shear(2,3)
| ——

T

2/14/2006

Dani Lischinski

of length 2: {x}
y

& What happens when this vector is
multiplied by a 2 by 2 matrix?

H My g

2/14/2006 Dani Lischinski 8

Scaling

& Scale(a,b):
HHANS

& What happens when a or b are negative?

2/14/2006 Dani Lischinski 9

Reflection
-1 0
o reflection through the y axis: 0 J
1 0
¢ reflection through the x axis: 0 _J
:0 1
o reflection through y = x. 1 0}
0 -1
o reflection through y = -x. 1 0

2/14/2006 Dani Lischinski 10

Rotation, Shearing
¢ Rotate(0):
cosf —sind | x| |cos@x—sindy
Line cose}{y}_{sin0x+cosey}
Shear(a,b):

F MR

2/14/2006 Dani Lischinski 11

Combined Transformations

A sequence of transformations can be
collapsed into a single matrix using matrix
multiplication:

X X
T1T2T3 y :T1,2,3 y

¢ Is the order of transformations
important?

2/14/2006 Dani Lischinski 12

Translation

¢ Translate(a,b): { X} - {X " a}
y y +b

Problem: cannot represent translation using
2 by 2 matrices!

& Solution: Ahomogeneous coordinates - use
a 3 by 3 linear transformation in a special
space: the projective plane.

2/14/2006 Dani Lischinski 13

Homogeneous Coordinates

& A point in the projective plane P? is represented by
3 coordinates, at least one of which is non-zero.

& Two 3-vectors a,b represent the same point in P?
iff a = hb, where h is a non-zero scalar.

& A 2D point (x,y) in the Euclidean plane corresponds
to the 3-vectors (hx,hy,h) in P?, such as (x.y,1).
Note: this is a one-to-many correspondencel!

& Geometric interpretation: each point (x,y)
corresponds to a ray in 3D, from the origin (0,0,0)
through the point (x,y,J)

2/14/2006 Dani Lischinski 14

Transilation

& Translate(a,b):

1 X X + a
0 1 yl=]y+bDb
0 1 1

2/14/2006 Dani Lischinski 15

Homogeneous Matrices

¢ All of the 2D transformations we have
seen so far can now be written as follows:

a b m
c d n
0 0 1

& What happens when last row is not [0,0,1]?

2/14/2006 Dani Lischinski 16

Example 1

& Rotation about an arbitrary point.

<J
a

2/14/2006 Dani Lischinski 17

)

Example 2

Reflection through an arbitrary line

<
— O

2/14/2006 Dani Lischinski 18

Affine Transformations:
Definition

elet T: A — A,, where A, and A, are affine
spaces.

& Then T is said to be an affine
transformation if:

& T maps vectors to vectors and points to points

¢ T is a linear transformation on vectors
® T(p +u)=T(p) + T(u)

2/14/2006 Dani Lischinski 19

Affine Transtformations:
Properties

o Affine transformations preserve affine
combinations of points. In other words,
given an affine transformation T and a

en o
Port P P=aypP; +- -+ Py
it holds that: T(p) =, T(p,) ++--+, T(p,)

Parallel lines are preserved.
Intersections between lines are preserved.

2/14/2006 Dani Lischinski 20

2D Transformations
(summary)

Translation, Rotation, Scaling, Reflection,
Shearing

Rigid-body transformations: preserve
angles and lengths

o Affine transformations: preserve parallel
lines, but not lengths or angles.

2/14/2006 Dani Lischinski

21

Viewing in 2D

& Objects are given in terms of application
dependent world coordinates (WC)

& The world is viewed through a WC window:
gluOrtho2D(left, right, bottom, up)

(right,top)

(left,bottom)

2/14/2006 Dani Lischinski 22

The Viewport

& The WC window is mapped onto a device

coordinate (DC)viewport:
glViewport(x, y, width, height)

width

wb1ay

(xy)

2/14/2006 Dani Lischinski

23

2D Viewing Transformation

Translate WC window to origin:
Translate(-left, -bottom)

Scale WC window to match viewport size:
Scale(width/(right - left), height/(top - bottom))

& Translate fo position viewport: Translate(x,y)

2/14/2006 Dani Lischinski 24

