Basic Geometric Entities

- Scalars - real numbers
- sizes/lengths, angles
- Vectors - typically 2D, 3D, 4D
- directions
- Points - typically 2D, 3D, 4D
- locations

Spaces

- Scalar field: formed by scalars and the operations between them (+ , ${ }^{*}$).
- Vector space: formed by vectors, scalars, and the operations between them.
- Note: a purely abstract vector space has no notion of: distance, size, angle, or point!

Affine spaces

- An affine space adds the notion of point to the vector space: $A=(P, V)$, where V is a vector space and P is a set of points:
- for every point p and vector $v, p+v \in P$
- for every two points $p, q: p-q \in V$.
- By choosing a basis and designating an origin point, we define an affine frame:

$$
\mathbf{p}=\mathbf{a}+\alpha_{1} \mathbf{v}_{1}+\cdots+\alpha_{n} \mathbf{v}_{n}
$$

Euclidean / Cartesian spaces

- A Euclidean space is an affine space with a distance metric based on inner product:
$|\mathbf{a}-\mathbf{b}|=\sqrt{\langle\mathbf{a}-\mathbf{b}, \mathbf{a}-\mathbf{b}\rangle}=\sqrt{\left(\mathbf{a}_{1}-\mathbf{b}_{1}\right)^{2}+\cdots+\left(\mathbf{a}_{n}-\mathbf{b}_{n}\right)^{2}}$
- Cartesian space: Euclidean space with a standard orthonormal frame:
- Basis vectors have length 1
- Basis vectors are pairwise perpendicular (orthogonal)

Operations on Vectors

- Cross product (vector product)

$$
\mathbf{u} \times \mathbf{v}=\left[\begin{array}{l}
u_{2} v_{3}-u_{3} v_{2} \\
u_{3} v_{1}-u_{1} v_{3} \\
u_{1} v_{2}-u_{2} v_{1}
\end{array}\right]
$$

-What is the geometric meaning of these operations?

Operations on Vectors

- Addition

$$
\mathbf{u}+\mathbf{v}=\left[u_{1}+v_{1}, \ldots, u_{n}+v_{n}\right]^{\mathrm{T}}
$$

- Multiplication by a scalar

$$
s \mathbf{u}=\left[s u_{1}, \ldots, s u_{n}\right]^{\mathrm{T}}
$$

- Dot product (scalar product)

$$
\mathbf{u} \cdot \mathbf{v}=\mathbf{u}^{\mathrm{T}} \mathbf{v}=u_{1} v_{1}+\cdots+u_{n} v_{n}
$$

Operations on Vectors

- Vector size/length/norm:

$$
|\mathbf{v}|=\sqrt{\mathbf{v}_{1}^{2}+\cdots+\mathbf{v}_{n}^{2}}
$$

- Unit vector = pure direction

$$
|\mathbf{v}|=1
$$

- General vector $=$ size * direction
- Vector normalization:

$$
\mathbf{v} \leftarrow \frac{\mathbf{v}}{|\mathbf{v}|}
$$

Operations on Points

- Can't add points...
- but can add a vector to a point $\quad \mathbf{a}+\mathbf{v}=\mathbf{b}$
- also can subtract points

$$
\mathbf{v}=\mathbf{b}-\mathbf{a}
$$

- Can't multiply a point by a scalar...
- but can take the affine combination of two points: $\mathbf{C}=s \mathbf{a}+\mathbf{t} \mathbf{b}$ where $s+t=1$
- can also take the affine combination of $n>2$ points.

Lines and Planes

- A line in 2D can be defined by:
- all affine combinations of two points
- implicit equation: $f(x, y)=a x+b y+c=0$
- parametric equation: $L(t)=0++D$
- A plane can be defined by:
- all affine combinations of three points
- implicit equation: $f(x, y, z)=a x+b y+c z+d=0$
- parametric equation: $P(s, t)=0+s D_{1}++D_{2}$

