1 Introduction

Information Theory was originally developed by Claude Shannon for the purpose of an efficient information transmission through a communication channel, i.e. sending shorter messages without losing information. The Huffman Code is an example of a code that preserves all the information, it is the most efficient prefix code.

In this lesson we will discuss only codes that preserve all the information.

2 Efficient Coding

Let X be a random variable of words, and let $l(x)$ be the length of the code of the word x.

The cost of the coding of x is:

$$cost = \mathbb{E}[l(x)] = \sum_x P(x)l(x)$$

We would like the cost to be minimal.

A prefix code can be described by a binary tree and therefore the following inequality must hold:

$$\sum_x 2^{-l(x)} \leq 1$$

If every leaf in the tree represents a coded word then an equality will hold.

In an efficient code this term will be as close as possible to 1.

Let’s look at the following minimization problem:

$$\min_{l(x)} \sum_x P(x)l(x)$$

subject to:

$$\sum_x 2^{-l(x)} = 1$$
This problem can be solved using the Lagrangian:

$$\mathcal{L} = \sum_x P(x)l(x) - \lambda \sum_x s^{-l(x)} - 1$$

$$0 = \frac{\partial \mathcal{L}}{\partial l(x)} = P(x_0) + \lambda \ln(2) \cdot 2^{-l(x_0)}$$

$$2^{-l(x_0)} = \frac{-P(x_0)}{\lambda \ln(2)}$$

$$-l(x_0) = \log_2\left(\frac{-P(x_0)}{\lambda \ln(2)}\right)$$

$$l(x_0) = -\log_2(P(x_0)) + \log_2(-\lambda \ln(2))$$

The only way to fulfil the constraint \(\sum_x 2^{-l(x)} = 1\) is when \(l(x_0) = -\log_2(P(x))\)

and therefore: \(\log_2(-\lambda \ln(2)) = 0\) \(\Rightarrow\) \(\lambda \ln(2) = 1\)

and then we get that the condition for the most efficient code for \(x\) is:

$$l(x) = -\log_2 p(x) = \log_2 \frac{1}{p(x)}$$

3 Entropy

The entropy is defined as the average number of bits that are needed to code a word:

$$H_p(X) = \mathbb{E}[\log_2 \frac{1}{p(x)}] = \sum_x P(x) \log_2 \frac{1}{p(x)}$$

We have proved that the entropy is a lower limit for the compression ability using a prefix code.

The entropy is a real number and not an integer. If we define a code in which the length of each coded word is the rounded up entropy, the code of a large message will waste a lot of bits. One solution for this problem is to code \(k\) words together. The bigger \(k\) is, the closer the message length will be to its entropy.

3.1 Entropy of a Binary Random Variable

Let \(X\) be a binary random variable that can get the value \(x_0\) and \(x_1\) while \(P(x_0) = p\) and \(P(x_1) = 1 - p\).

$$H(X) = H(p) = p \cdot \log_2 \frac{1}{p} + (1 - p) \cdot \log_2 \frac{1}{1 - p}$$
In Figure 1 we can see that when X is deterministic the entropy is 0, and when there is a uniform distribution the entropy is maximal. In general: $0 \leq H(x) \leq \log_2(x)$

3.2 System Entropy

We can write the probability as a function of the variable’s energy:

$$p(x) = \frac{1}{z(T)} \cdot e^{-\frac{E(x)}{kT}}$$

while $z(T)$ is a constant partition function.

In this case the system’s entropy is:

$$H(X) = \sum_x (p(x)E(x)\frac{\log_2(e)}{kT}) + \log_2(z(T))$$

The system’s entropy can tell us how much the system is disordered.

3.3 Joint Entropy

The entropy of two random variables is:

$$H(X, Y) = \sum_x \sum_y P(x, y) \log_2 \frac{1}{P(x, y)}$$

In a similar way we can define the entropy of any number of variables.
If X and Y are independents then: $H(X, Y) - H(X) = H(Y)$
If they are dependent then: $H(X, Y) - H(X) < H(X)$
In the general case:

$$H(X, Y) - H(X) = -\sum_x \sum_y P(x, y) \log_2 P(x, y) + \sum_x P(x) \log_2 P(x) =$$

$$= -\sum_x P(x) \cdot \left[\sum_y \frac{P(x, y)}{P(x)} \log_2 \frac{P(x, y)}{P(x)} \right] =$$

$$= \sum_x P(x) \cdot \left[-\sum_y P(y|x) \log_2 P(y|x) \right] =$$

$$= \sum_x P(x) H_{P(Y|x)}(Y) = \sum_x P(x) H(Y|x) = H(Y|X)$$

$$\downarrow$$

$$H(X, Y) - H(X) = H(Y|X)$$

$H(Y|X)$ is the average number of bits needed to code Y when we know the value of X, while $H(Y)$ is the average number of bits needed to code Y without any other information.

According to the intuition: $H(Y|X) \leq H(Y)$ and when X and Y are independent: $H(Y|X) = H(Y)$ because X doesn’t give us any information about Y.

3.4 Chain rule of Entropy

$$H(X_1, ..., X_n) = \sum_i H(X_i|X_1, ..., X_{i-1})$$

4 Information

The information of X and Y is:

$$I(X : Y) = H(Y) - H(Y|X) = \sum_x \sum_y P(x, y) \log_2 \frac{P(x, y)}{P(x)P(y)}$$

i.e. this is the number of bits we could save in the coding of Y if we knew X.

4
4.1 Information Properties

1. symmetry: \(I(X : Y) = I(Y : X) \)

2. \(X \perp Y \Rightarrow I(X : Y) = 0 \)

3. positivity: \(I(X : Y) \geq 0 \)

Jensen’s Inequality If \(f \) is concave then

\[
E[f(x)] \leq f(E[x])
\]

\[
\downarrow
\]

\[-I(X : Y) = E[\log_2 \frac{p(x)p(y)}{p(x,y)}] \leq \log_2 E[\frac{p(x)p(y)}{p(x,y)}] = \log_2 \sum_x \sum_y P(x,y) \frac{P(x)P(y)}{p(x,y)} = \]

\[
= \log_2 \sum_x \sum_y P(x)P(y) = \log_2 1 = 0
\]

\[
\downarrow
\]

\(I(X;Y) \geq 0 \)

4.2 Chain rule for Information

\[
I(X_1, \ldots, X_n; Y) = \sum_i I(X_i; Y|X_1, \ldots, X_{i-1})
\]

And for \(n=2 \):

\[
I(X_1, X_2; Y) = I(X_1; Y) + I(X_2; Y|X_1)
\]

5 What is between Entropy and Information?

5.1 An upper bound for Information

\[
I(X; Y) \leq H(X)
\]

\[
I(X; Y) \leq H(Y)
\]
5.2 Mutual Entropy

\[H(X,Y) = H(Y) - H(Y|X) = H(Y) - I(X,Y) + H(X) \]

Visualization through Venn diagram:

5.3 Conditional Information of two random variables given the third

\[I(X,Y|Z) = H(Y|Z) - H(Y|Z,X) = \sum_{x,y,z} P(x,y,z) \log_2 \frac{P(x,y|z)}{P(x|z)P(y|z)} \]

6 Using Entropy to represent Motif LOGOs

Motifs can be represented by giving an Information value for each position in the Motif:
X-axis represents the position in the Motif.
The height of each letter in position \(i \) is calculated the following way:

\[
y = H_{p_0}(x) - H_{p_i}(x)
\]

When \(H_{p_0}(x) \) is the Entropy of \(x \) according to background distribution and \(H_{p_i}(x) \) is the Entropy of \(x \) according to the distribution in position \(i \) of the motif.

The total height of all letters in a certain position is the Information in that position.

7 KL divergence (or relative entropy)

Given a real distribution \(p \) and an erroneous distribution \(q \) our coding inefficiency is measured as:

\[
D_{KL}(p||q) = \sum_x p(x) \log_2 \frac{1}{q(x)} - \sum_x p(x) \log_2 \frac{1}{p(x)} = \sum_x p(x) \log_2 \frac{p(x)}{q(x)}
\]
Coding inefficiency means using a code that is best for distribution \(q \) (was constructed for that distribution) and coding with it sequences from distribution \(p \).

It always holds that

\[
D_{KL}(p||q) \geq 0
\]

The equality holds when

\[
p(x) = q(x)
\]

1. \(D_{KL} \) has no upper bound.
2. \(D_{KL} \) is not symmetric.
3. \(D_{KL} \) doesn’t follow the triangle inequality.

7.1 Definition of Information using \(D_{KL} \):

\[
I(X;Y) = D_{KL}(P(X,Y)\|P(X)P(Y))
\]

7.2 Using \(D_{KL} \) to measure distance between empirical distribution of random variable \(X \) (\(\hat{P} \)) and the real distribution of \(X \) according to parameter \(\theta \):

\[
\frac{1}{M} l(\theta) = \frac{1}{M} \sum_m \log_2 p(x[m] : \theta)
\]

Empirical probability of \(X \):

\[
\hat{P}(x) = \frac{1}{M} \sum_m 1\{X[m] = x\}
\]

\[
\frac{1}{M} l(\theta) = \sum_x \hat{P}(X) \log_2 p(X : \theta)
\]

\[
D_{KL}(\hat{P}||P(X : \theta)) = -H_{\hat{P}}(X) - \frac{1}{M} l(\theta)
\]

Where the first addend is independent of \(\theta \) and the second addend minimizes the expression when the likelihood is maximized.