
Engineering Agent Interactions from ACL-based Reusable
Connectors ∗

Juan Manuel Serrano, Sascha Ossowski, Sergio Saugar
Artificial Intelligence Group

School of Engineering
University Rey Juan Carlos

JuanManuel.Serrano@urjc.es, Sascha.Ossowski@urjc.es, Sergio.Saugar@urjc.es

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelli-
gence—multiagent systems

General Terms
Design, Theory, Standardization

Keywords
Agent Communication Languages and Protocols, Multi-agent pro-

gramming frameworks, JADE

ABSTRACT
This paper reports on the RICA−J multiagent program-
ming framework, which provides executable constructs for
each of the organizational, ACL-based modelling abstrac-
tions of the RICA theory. Setting out from a component
and connector perspective on the elements of the RICA
metamodel, their execution semantics is defined and instru-
mented on top of the JADE platform. Moreover, a system-
atic reuse approach to the engineering of interactions is put
forward.

1. INTRODUCTION
In the past few years, multi-agent systems (MAS) have

been proposed as a suitable software engineering paradigm
to face the challenges posed by the development of large-
scale, open systems. In particular, organization-oriented
abstractions such as roles, social interactions, groups, or-
ganizations, institutions, etc., have proved to be an effective
means to model the interaction space of complex MAS [4].
Drawing on the RICA metamodel [3], this paper attempts
to reconcile MAS organizational research with two major
branches in software engineering: software architectures [1]
and component-based development [2]. Section 2 will show
how a Component & Connector (C&C) perspective fits the
RICA theory, and analyzes communicative roles and inter-
actions from the point of view of generic software compo-
nents. Section 3 provides a survey of the RICA−J frame-

∗Research sponsored by the Spanish Ministry of Education
and Science (MEC), project TIC2003-08763-C02-02

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

work, emphasizing the mapping of the C&C-based execution
semantics to the JADE platform, and the architecture of a
RICA−J application.

2. THE RICA THEORY
The metamodel of the RICA theory provides a modelling

language of the organizational and communicative features
of MAS [3]. Figure 1 shows a RICA model of a simple
e-commerce application expressed in terms of a UML class
diagram. The organizational model comprises the different
types of social interactions agents may engage in. For in-
stance, client and clerk agents may jointly perform purchase
interactions, which instill an e-commerce transaction of a
good using some credit card. Other types of interactions
include information exchange or advisory interactions.

Figure 1: RICA model of a simple e-commerce ap-
plication

From a software architecture perspective, agents can be
conceived as a particular type of (autonomous, social, sit-
uated, etc.) software component, since they represent the
major computational units of MAS. Furthermore, social in-
teractions can be considered as a kind of connector, since
they mediate and regulate the different interactions among
agents. Thus, the caller and callee roles in a RPC inter-
action, or the reader and writer in a pipe connection, are
analogues of the buyer and seller social roles declared by a
purchase interaction. Social interactions mainly differ from
pipes, SQL links, and other types of connectors in their char-
acteristic interaction mechanism: the Agent Communication
Language (ACL).

1325

In the RICA theory, so-called communicative interactions
provide the pragmatic features of application-dependent so-
cial interactions, which basically differ at the semantic level.
Thus, the purchase interaction is recursively defined in terms
of the action performing communicative interaction, which
provides the communicative actions (CAs) and protocols re-
quired by buyer and seller agents. Besides inheriting these
components, social roles and interactions may override and
extend some of the super-type features (e.g. the evaluate
social action is overriden by the evaluateSell action; the
sell action extends the actions that can be performed by
seller agents). Thanks to the cross-domain features of CAs
and protocols, ACL-based interactions are generic first-class
reusable components. Note that these reusable components
are actually connectors, in the C&C perspective.

As a first step towards defining programming abstractions
that correspond to the RICA modeling entities, the execu-
tion semantics of the later needs to be defined. Accord-
ingly, the RICA theory specifies a generic agent architec-
ture which supports the dynamics of agents within a RICA
organization. Behavioural features of role types, such as ac-
tivation and participation conditions, as well as the services
provided by protocol instances at run-time are specified as
well. Overriding declarations of role actions introduces a dy-
namic binding feature in the execution semantics of RICA
models. For instance, when seller agents are required to
perform the evaluate action, the action that is actually ex-
ecuted at run-time is evaluateSell. This mechanism allows
for a direct reuse of interaction protocols, fully specified in
the scope of communicative interactions.

3. THE RICA−J FRAMEWORK
The RICA theory, given its metamodel and execution se-

mantics, can be conceived as a programming language with
close links to Architectural Description Languages (ADLs).
As a more pragmatic alternative to the direct instrumenta-
tion of the “RICA programming language”, the RICA−J
(RICA-JADE) framework instruments the RICA theory on
top of the FIPA-compliant JADE platform. Basically, the
RICA−J framework adds a layer composed of the rica.re-
flect and rica.core Java packages, which instrument the
RICA metamodel and execution semantics, respectively.

The rica.core classes map the common behaviour and
structure of agents, roles, etc., as defined by the RICA
execution semantics, to the supported abstractions of the
JADE framework: basically, agents, behaviours and ACL
messages. The resulting architecture of a RICA−J agent
is exemplified in figure 2, where the run-time structure of a
possible client agent is shown. Firstly, any rica.core.Agent

(a kind of JADE agent) schedules a RoleMonitor behaviour
(a JADE cyclic behaviour), in charge of monitoring the ac-
tivation conditions of roles. Secondly, each played role is
instrumented by a SocialRoleBehaviour (a JADE paral-
lel behaviour) which contains a ParticipationMonitor be-
haviour, which acts as an interaction factory. Moreover, it
also contains one behaviour for each of the interactions in
which the agent is participating.

Different types of programmers participate in the develop-
ment of an application in the RICA−J framework. Firstly,
component developers are in charged of implementing the
communication library containing differerent communica-
tive roles and interactions (such as the ones underlying FIPA
ACL [3]), as well as the required protocol formalisms (e.g.

Figure 2: RICA−J agent architecture

AUML sequence diagrams). Secondly, organizational devel-
opers implements the social roles and interactions of the
MAS organization. Last, independent agent programmers
rely on the components available in the organizational li-
brary, possibly customizing the social roles to be played by
overriding their default functionality or implementing their
abstract actions.

4. CONCLUSION
The RICA−J framework relieves agent programmers from

the instrumentation of low-level issues concerning the dy-
namics of agents within the organization. It should be stressed
that the proposed approach does not endanger the autonomy
of agents, since the social roles available in the organization
library may be fully customized to account for the particu-
lar requirements of each agent. Moreover, modeling social
interactions in terms of software connectors has as a major
consequence the identification of the characteristic roles that
their participant agents may play within it. This feature dif-
ferentiates the RICA organizational metamodel from other
proposals, and allows a systematic approach to the reuse
of agent interactions. Future work will concentrate on the
extension of the underlying metamodel with coarse-grained
organizational abstractions, and the instrumentation of the
interaction monitoring and compliance capabilities that any
open-driven framework must offer.

5. REFERENCES
[1] R. Allen and D. Garlan. A Formal Basis for

Architectural Connection. ACM Transactions on
Software Engineering and Methodology, 6(3):213–249,
June 1997.

[2] I. Jacobson, M. Griss, and P. Jonsson. Software Reuse.
Architecture, Process and Organization for Business
Success. Addison-Wesley, 1997.

[3] J. M. Serrano and S. Ossowski. An organizational
metamodel for the design of catalogues of
communicative actions. Intelligent Agents and
Multiagent Systems (Kuwabara & Lee, ed.), Lecture
Notes in Computer Science, 2413:92–108, 2002.

[4] F. Zambonelli, N. R. Jennings, and M. Wooldridge.
Developing multiagent systems: The Gaia
methodology. ACM Transactions on Software
Engineering and Methodology, 12(3):317–370, July
2003.

1326

