
Towards An Agent Oriented Programming Language with
Caste and Scenario Mechanisms ∗

Ji Wang
National Laboratory for
Parallel and Distributed

Processing
Changsha, 410073, China

jiwang@mail.edu.cn

Rui Shen
National Laboratory for
Parallel and Distributed

Processing
Changsha, 410073, China

shenrui98@yahoo.com

Hong Zhu
Department of Computing
Oxford Brookes University

Oxford, OX33 1HX, UK

hzhu@brookes.ac.uk

ABSTRACT
The paper presents an agent-oriented programming language
SLABSp. It provides caste and scenario mechanisms in a
coherent way to support the caste-centric methodology of
agent-oriented software development. It uses caste as a mod-
ular facility to organize agents into castes and to represent
their structure and behavior characteristics. SLABSp also
uses scenarios to define agents’ behaviors in the context of
environment situations. In the paper, the implementation
of the language is briefly described. An example of the pro-
gram is given to illustrate its programming style.

Categories and Subject Descriptors
D.3.2 [Programming Languages]: Language Classifica-
tions—Concurrent, distributed, and parallel languages

General Terms
Languages

Keywords
Caste, Scenario, Agent-Oriented Programming

1. INTRODUCTION
Recent years has seen a rapid growth of research in agent-

oriented (AO) software development methodologies. How-
ever, programming languages based on AO methodologies
have not been explored as desired from the perspective of
software engineering. It is desirable to find/invent suitable

∗Supported by the National NSF of China under grant No.
60233020 and 90104007, the National High Technology R&D
863 Programme of China under grant No. 2002AA116070,
and Program for New Century Excellent Talents in Univer-
sity.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

language facilities to support efficient and direct implemen-
tations of the concepts and characteristics of agents pre-
sented in AO analysis and specification. Recently, in [4, 5,
6], caste is proposed as the classifier of agent to define a col-
lection of agents that have the same behavior and structural
characteristics, and scenario is proposed to define agent be-
haviors in the context of environment situations. This paper
reports a programming language SLABSp and its implemen-
tation that supports these language facilities directly and
coherently.

2. CASTE AND SCENARIO
SLABSp is a Java-extended programming language de-

signed to support the caste-centric approach to AO soft-
ware development methodology [5]. Its key concepts and
language facilities are castes and scenarios.

SLABSp regards a multi-agent system (MAS) as a set of
agents, which are encapsulations of states, actions and be-
havior rules that govern its behaviors. SLABSp organizes
agents in a MAS into castes, which is the classifier of agents
and a modular programming unit that defines templates of
the structure and behavior characteristics of agents. Just
as classes in OO languages are abstractions of sets of ob-
jects, castes are abstractions of sets of agents that have the
same features of state spaces, actions, behaviors and envi-
ronments. However, in contrast to the static bindings of ob-
jects to classes in OO paradigm, an agent can be bounded to
a caste dynamically, i.e. it may join to or quit from a caste
at runtime. Each agent can join multiple castes. When an
agent joins a caste, it will obtain all elements of the caste,
including the state variables, actions, and behavior rules.
Naming conflictions must be carefully avoided in program-
ming when an agent may join multiple castes. Currently,
elements defined in different castes but of the same name
and type are considered as the same element. A more com-
plicated mechanism for the detection and resolution of name
conflictions is still under investigation. The concept of caste
has been presented in [5] and examined in [4, 6] to justify its
features as a step beyond object orientation. The structure
of agent and caste in SLABSp is shown in Figure 1.

SLABSp uses scenarios to describe agent behaviors in the
context of environment situations. Using scenarios, agents
can perceive other agents’ behaviors in its environment to
decide its action rather than driven by message communica-
tions. Here, the environment of an agent is the set of agents
in the system that can affect its behavior.

In general, the notion of scenario as presented in [1, 3, 5]

1297

caste Philosopher {
action think(){

do{
try { Thread.sleep(5000);
} catch (Exception e){}

}
}
action eat(){

do{
@takeLeft();
@takeRight();
try { Thread.sleep(5000);
} catch (Exception e){}
@putLeft();
@putRight();

}
}
action takeRight(){ do{} }
action takeLeft(){ do{} }
action putRight(){ do{} }
action putLeft(){ do{} }
behavior think0(){

do { @think(); }
} when {[@start()] } while {}
behavior think(){

do { @think(); }
} when {[@eat()] } while {}

}

Philosopher.p
agent P1 join Philosopher {

behavior eat(){
do { @eat(); }

} when {
[@think()]

} while {
not (P5: [@takeRight()])
and not (P2: [@takeLeft()])

}
}

P1.p
agent P1 join Philosopher {

behavior eat(){
do { @eat(); }

} when {
[@think()]

} while {
not (P5: [@takeRight()])
and not (P2: [@takeLeft()])

}
}

P1.p

agent P2 join Philosopher {
behavior eat(){

do { @eat(); }
} when {

[@think()]
} while {

not (P1: [@takeRight()])
and not (P3: [@takeLeft()])

}
}

P2.p
agent P2 join Philosopher {

behavior eat(){
do { @eat(); }

} when {
[@think()]

} while {
not (P1: [@takeRight()])
and not (P3: [@takeLeft()])

}
}

P2.p

agent P3 join Philosopher {
behavior eat(){

do { @eat(); }
} when {

[@think()]
} while {

not (P2: [@takeRight()])
and not (P4: [@takeLeft()])

}
}

P3.p
agent P3 join Philosopher {

behavior eat(){
do { @eat(); }

} when {
[@think()]

} while {
not (P2: [@takeRight()])
and not (P4: [@takeLeft()])

}
}

P3.p

agent P4 join Philosopher {
behavior eat(){

do { @eat(); }
} when {

[@think()]
} while {

not (P3: [@takeRight()])
and not (P5: [@takeLeft()])

}
}

P4.p
agent P4 join Philosopher {

behavior eat(){
do { @eat(); }

} when {
[@think()]

} while {
not (P3: [@takeRight()])
and not (P5: [@takeLeft()])

}
}

P4.p
agent P5 join Philosopher {

behavior eat(){
do { @eat(); }

} when {
[@think()]

} while {
not (P4: [@takeRight()])
and not (P1: [@takeLeft()])

}
}

P5.p
agent P5 join Philosopher {

behavior eat(){
do { @eat(); }

} when {
[@think()]

} while {
not (P4: [@takeRight()])
and not (P1: [@takeLeft()])

}
}

P5.p

Figure 1: Dinning philosophers in SLABSp

is a set of typical situations in the operation of a system in
the form of a sequence of activities. Its most fundamental
characteristic is to put events in the context of the history of
behavior. In SLABS and SLABSp, it is extended to describe
the situations in the executions of MAS as combinations of
the behaviors of related agents. The basic form of scenario
description in SLABSp is a pattern of an agent’s behavior,
which is a sequence of observable state changes and actions
taken by the agent. SLABSp can also describe the situations
that a specific agent behaves in a certain pattern, a number
of or all agents of a caste behave in a certain pattern, and
logic combinations of such situations and relational expres-
sions that contain such descriptions. Once an agent’s state is
changed or an observable action is taken, the pattern hence
the scenario will be evaluated to decide whether an action
should be taken.

A runtime environment to support the execution of MAS
has been implemented as extension of Java runtime envi-
ronment. In particular, an automaton, the Pattern Process
Machine [2], is designed and implemented to process pat-
terns and scenarios. A compiler has been written to trans-
late SLABSp programs into Java and to execute in the run-
time environment. The approach to implementing the AO
language facilities is to embed AO mechanisms in Java.

3. EXAMPLE
The SLABSp and its implementation has been tested on

a number of examples. Figure 1 shows the program in
SLABSp for the classic dinning philosophers problem. The
program contains a caste named Philosopher and its five
agents named P1, ..., P5, respectively. Caste Philosopher
declares six actions think, eat, takeRight, takeLeft, putRight
and putLeft, and two behavior rules think0 and think. The
rules instruct the agent to take action think after start or
eat, respectively. When action eat is taken, it triggers the
action takeLeft to get the left dinner-set, and then the action
takeRight to get the right one. After 5 seconds of eating, it

takes action putLeft and putRight to return the dinner-sets.
Each of agent P1, ..., P5 joins caste Philosopher, and defines
an additional behavior rule eat so that it takes action eat
after action think has been taken when both of its neighbors
have not taken the dinner-sets between them. Figure 2 is a
screen snapshot of the execution of the program.

Figure 2: Screen snapshot of dinning philosophers

It is worth noting that there is no explicit message-based
communications between agents in the dinning philosophers
program. Our experiences in SLABSp programming show
that caste and scenario can provide a powerful means of
abstraction in AO software development.

4. CONCLUSION
The design and implementation of SLABSp demonstrated

that caste and scenario are feasible as programming lan-
guage facilities. Our experiences and experiments with the
language clearly showed that they can provide power ab-
stractions for AO programming. In particular, the caste
facility enables the modularity in the concept of agents to
be realized directly and in full strength. An obvious advan-
tage of using scenarios to define agents’ behaviors is that
it can significantly reduce the unnecessary explicit message-
based communications among agents. This also enables AO
programming at a very high level of abstraction.

5. REFERENCES
[1] B. Moulin and M. Brassard. A scenario-based design

method and environment for developing multi-agent
systems. In Proceedings of First Australian Workshop
on DAI, volume 1087 of LNAI, pages 216–232, 1996.

[2] R. Shen, J. Wang, and H. Zhu. Scenario mechanism in
agent-oriented programming. In Proceedings of
APSEC’04, pages 464–471, Busan, Korea, 2004.

[3] H. Zhu. Scenario analysis in an automated
requirements analysis tool. Journal of Requirements
Engineering, 5(1):2–22, 2000.

[4] H. Zhu. The role of caste in formal specification of
MAS. In Proceedings of PRIMA’2001, volume 2132 of
LNCS, pages 1–15, 2001.

[5] H. Zhu. SLABS: A formal specification language for
agent-based systems. International Journal of SEKE,
11(5):529–558, 2001.

[6] H. Zhu and D. Lightfoot. Caste: A step beyond object
orientation, in modular programming languages. In
Proceedings of JMLC’2003, volume 2789 of LNCS,
pages 59–62, 2003.

1298

