
A BDI Architecture for Goal Deliberation

Alexander Pokahr, Lars Braubach, Winfried Lamersdorf
Distributed Systems and Information Systems

Computer Science Department, University of Hamburg
{pokahr | braubach | lamersd}@informatik.uni-hamburg.de

ABSTRACT
One aspect of rational behavior is that agents can pursue multiple
goals in parallel. Current BDI theory and systems do not provide
a theoretical or architectural framework for deciding how goals in-
teract and how an agent can decide which goals to pursue. Instead,
they assume for simplicity reasons that agents always pursue con-
sistent goal sets. By omitting this important aspect of rationality,
the problem of goal deliberation is shifted from the architecture
to the agent programming level and needs to be handled by the
agent developer in an error-prone ad-hoc manner. This paper ar-
gues that goal deliberation mechanisms can hardly be built directly
into the fixed BDI interpreter cycle, because goal deliberation typ-
ically needs to be done irregularly at any point in time. Therefore,
an enhanced BDI interpreter architecture is proposed that is specif-
ically designed for extensibility. This extensibility can be exploited
for the integration of arbitrary goal deliberation strategies.

Categories and Subject Descriptors
I.2.11 [ARTIFICIAL INTELLIGENCE]: Distributed Artificial
Intelligence—Intelligent agents

General Terms
Design

Keywords
BDI Agents, Goal Deliberation

1. INTRODUCTION
Goal-directedness is one important characteristic of rational

agents, because it allows agents to exhibit pro-active behavior and
it is argued that the BDI (belief-desire-intention) model [1] is well
suited to describe this kind of agents. Typically, goal-directed
agents should be capable of pursuing multiple goals simultane-
ously. As a consequence the agent’s goals can interact positively
or negatively with each other [6]. Positive interaction means that
one goal contributes to the fulfillment of another one, whereas neg-
ative contribution indicates a conflict situation in which one goal

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

hinders the other. Such contribution relationships between goals
are commonly used in modeling agent applications, e.g. in the Tro-
pos methodology [2] and in the requirements engineering technique
KAOS [3]. Despite their usefulness, most implemented agent sys-
tems based on the BDI model do not support any mechanism for
handling goal relationships at the architectural level. Hence, the
cumbersome task of ensuring that the agent will never process any
conflicting goals at the same time is left to the agent developer.

The main aspect of goal deliberation is “How can an agent delib-
erate on its (possibly conflicting) goals to decide which ones shall
be pursued?”. Considering this question from an architectural point
of view it is of interest how a goal deliberation strategy can be inte-
grated into a BDI infrastructure. Thereby, the agent infrastructure
has the tasks to activate the strategy at certain points in time and to
provide a clearly defined interface by specifying the possible op-
erations for conflict resolution and exploiting positive goal interac-
tions. These operations are constrained by the attitudes supported
by the agent architecture. E.g. only when the architecture dis-
tinguishes between goals and desires the deliberation process can
resort to both concepts.

The approach presented in this paper proposes a new flexible
BDI-interpreter architecture. This architecture does not employ
a fixed deliberation cycle, but instead resorts to an action-based
model, in which the interpreter selects and executes BDI meta-
actions like execute plan step. These meta-actions are directly
derived from the well-known BDI abstract interpreter [5] and ex-
tended with goal-related actions (e.g. create goal) that support an
explicit handling of goals.

2. A FLEXIBLE BDI INTERPRETER
The basic idea of the new architecture is to break up the orig-

inal interpreter cycle as described in [5] into a small set of self-
contained meta-actions, which are invoked as needed, rather than
being executed in a fixed sequence. Instead of operating on global
data structures, these actions are instantiated for individual attitudes
and other elements such as events.

2.1 Abstract Interpreter Actions
Fig. 1 shows the identified actions (dark rectangles) and intro-

duces abstract actions (light rectangles) as well as inheritance rela-
tionships (arrows) to group similar actions. The names of the ab-
stract interpreter steps are given below the action names. The Agent
Init action initializes an agent and is executed only once for each
agent. One important responsibility of the architecture is to find
and select applicable plans for an event or a goal. The correspond-
ing actions are closely related and therefore grouped together by
an abstract Process Event Action. The Find Applicable Candidates
action determines the list of plans that are able to handle a given

1295

Figure 1: Identified meta-actions

event or goal. From this list a subset of plans to be executed has
to be selected by the Select Candidates action. Selected plans then
have to be scheduled for execution (Schedule Candidates). Any
scheduled plan eventually has to be executed which is done in the
Execute Plan Step action. According to the original interpreter only
a single step is executed, allowing the agent to do other things be-
fore continuing with the plan. The get-new-external-events step of
the original interpreter cycle is not represented as an action in it-
self, as new events are added on-the-fly. The final two steps of the
interpreter are captured in the Terminate Plan and Goal Finished
actions. Instead of handling failure and success in separate steps,
the actions distinguish between mental attitudes (goals and plans).

This set of basic meta-actions is sufficient to rebuild the behavior
of traditional BDI agents and can be easily extended with custom
meta-actions for specialized agent architectures (e.g. supporting a
certain kind of deliberation).

2.2 Interpreter Architecture
The set of meta-actions forms the basis of the new interpreter

architecture. Abandoning the view that all actions are executed
after each other in a fixed interpreter cycle, the question arises how
can be decided which action to execute next, and also, when should
new actions be instantiated.

The basic mode of operation of the proposed interpreter is de-
picted in Fig. 2 (left hand side). The interpreter is based on a data
structure called Agenda where all actions to be processed are col-
lected. The interpreter continuously selects the next entry from the
agenda according to the interpreter’s action selection strategy and
executes it. The action execution may lead to the creation of new
actions (direct effects), which are also inserted into the agenda. In
addition, certain occurrences may render the execution of already
scheduled actions obsolete, e.g. an execute plan step action for a
meanwhile dropped goal should not be performed. Hence, a pre-
condition can be assigned to an action to ensure that obsolete ac-
tions are not executed and instead removed from the agenda.

For certain actions such as drop impossible/successful attitudes
in the original interpreter cycle, the operation itself has to decide
if the conditions for dropping an attitude hold. In our action based
model conditional actions separate the condition monitoring from
the action part. Conditions are created already when the corre-
sponding element is instantiated (e.g. a drop condition of a goal).
Only when conditions trigger during the lifetime of the correspond-
ing element, the associated action has to be executed. Therefore,
another important part of the architecture is the condition evalua-
tion (see Fig. 2, right hand side). This component checks system
state changes against all currently existing conditions. For all con-
ditions that are triggered by one or more of the state changes new
agenda entries will be produced. These “side-effects” of the current

Figure 2: Interpreter architecture

action are subsequently added to the agenda. Additionally, external
sources may also add entries to the agenda, such as messages that
have been received from other agents and need to be processed.

The presented interpreter architecture builds the functional core
of the extensively restructured Jadex BDI reasoning engine [4].

3. CONCLUSION
This paper tackles the question how goal deliberation strategies

can be integrated into BDI agent systems. To facilitate flexibility
and extensibility, a new BDI architecture is presented. The archi-
tecture is based on a flexible and backwards compatible interpreter
executing meta-actions from a dynamic agenda. Besides the ba-
sic set of meta-actions derived from the traditional BDI interpreter,
new meta-actions can be easily integrated to extend the architecture
in various aspects. Hence, arbitrary goal deliberation strategies can
be realized by providing new meta-actions specific for the strategy.
The interpreter architecture automatically takes care of activating
those actions at proper times.

Future work is on the one hand devoted to the further investiga-
tion of concrete deliberation strategies. We intend to experiment
with a strategy we have implemented, and with other strategies
(e.g. based on the work of Thangarajah et al). On the other hand
we intend to exploit the flexible interpreter architecture in other di-
rections, e.g. by investigating how other mental attitudes, such as
obligations, could be integrated.

4. REFERENCES
[1] M. Bratman. Intention, Plans, and Practical Reason. Harvard

University Press, Cambridge, Massachusetts, 1987.
[2] F. Giunchiglia, J. Mylopoulos, and A. Perini. The Tropos

Software Development Methodology: Processes, Models and
Diagrams. In Proc. of 1st Int. Joint Conf. on Autonomous
Agents and Multiagent Systems (AAMAS’02), 2002.

[3] E. Letier and A. van Lamsweerde. Deriving operational
software specifications from system goals. SIGSOFT Softw.
Eng. Notes, 27(6):119–128, 2002.

[4] A. Pokahr, L. Braubach, and W. Lamersdorf. Jadex: A BDI
reasoning engine. In R. Bordini, M. Dastani, A. Seghrouchni,
and J. Dix, editors, Multi-Agent Programming. Kluwer, 2005.

[5] A. Rao and M. Georgeff. BDI Agents: from theory to practice.
In Proc. of the 1st Int. Conf. on MAS (ICMAS’95), 1995.

[6] J. Thangarajah, L. Padgham, and M. Winikoff. Detecting and
Avoiding Interference Between Goals in Intelligent Agents. In
Proc. of the 18th Int. Joint Conf. on AI (IJCAI 2003), 2003.

1296

