
Handling Information Overload:
A MAS Architecture For Distributed Information Brokering

Klaus Stein, Christoph Schlieder
Laboratory for Semantic Information Processing

Otto-Friedrich-Universität Bamberg
{klaus.stein,christoph.schlieder}@wiai.uni-bamberg.de

1. INTRODUCTION
The gathering of information, exploration of information

resources etc. is a longstanding problem and a well known
agent task (from personal search agents [4] over distributed
information retrieval systems [5] to autonomous agents ex-
ploring dynamic document networks [3]). An information
retrieving agent not only faces the problem of acquiring in-
formation but also of selecting the interesting documents.

m agents retrieving information in a large set of n docu-
ments (messages on a discussion blackboard, websites in an
intranet, documents in a CMS, . . .) on their own gives far
to many (m · n) read requests. We propose to reduce this
complexity we introduce an intermediate level of prepro-
cessing information broker agents for efficently selecting all
documents matching a given search query from a document
network (documents referencing each other, e. g webpages
with links or papers with citations) and ranking these doc-
uments using the document network structure (i. e. sorting
them by relevance).

2. SYSTEM ARCHITECTURE
Fig. 1 shows two types of cooperating information bro-

ker agents being helpful by answering search queries: the
network information broker agent (NIBA) managing a
(continuously updated) index of all the documents contents
and meta information of a given repository for fast access
by search terms and a preprocessed representation of the
network structure with fast access to the sets of documents
referring (Ra) and being referred (Ca) by any document pa,
and the rank information broker agent (RIBA) han-
dling queries from an information searching agent by using
the structured and preprocessed information provided by
the NIBAs to calculate the structural ranks ri of the docu-
ments. The common way to compute these ranks is to start
with some initial values ri,0 for each document and then
iterating several (j) times distributing ri along the edges
in each iteration (see e. g. the journal ranking by Pinski
and Narin (later adapted to google pagerank [1]), Klein-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05,July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

Document Repository

Discussion Board

Information SourcesNIBAsRIBAsAgent Population

? ?

? ?

?

? ?

?

? ?

?

?

?

?
?

? ?

???
?

?
? ?

? ? ?

?
?? ??

?
??

??
?

? ?

?

?

?

?

?

??
?

?
?

?
?

?
??

? ?
?

?
?

Figure 1: multi agent information selection

bergs hub-authority-approach [2] etc. As there is not one
true ranking of documents but different rankings depending
on the needs of the searching agents, different RIBAs with
different algorithms are provided.

A preprocessing RIBA does a structural ranking of all doc-
uments which is cached and updated any time the RIBA is
informed about changes within an information source by the
associated NIBA. Due to the preprocessing searching is fast
and cheap: the searching agent sends its query to the RIBA
which passes it to the NIBAs. The NIBAs return a list
of matching documents, the RIBA adds the corresponding
ranks from its cache returning this enhanced list.

An on-demand processing RIBA works by selecting a sub-
net consisting of the documents D′ = D ∪ (

S
pk∈D Rk) ∪

(
S

pk∈D Ck) with D the subset of documents returned by

the NIBA (the subset of documents matched by the search
query). By computing the structural ranking on this sub-
net only documents related to the search term contribute
giving more specific results. This increases search costs for
the ranking has to be computed for each query. This also
allows to incorporate thematic information (e. g. in setting
the ri,0) in the ranking by further increased costs because
the documents contents have to get processed.

Altogether a complete search runs as follows: the NIBAs
return a list of matching documents, the RIBA adds the
corresponding ranks from its cache (or computes the struc-
tural ranking on the subnet D′) and returns this enhanced
list to A. A can customize its search by choosing one from
many RIBAs computing rankings with different algorithms

1275

sp: s-Agent + p-RIBA
ss: s-Agent + s-RIBA
st: s-Agent + t-RIBA
tp: t-Agent + p-RIBA
ts: t-Agent + s-RIBA
tt: t-Agent + t-RIBA
m: memory document access
d: disc document access

0

5

10

15

20

25

100 500 1000query size

 s

sp
ss

stm
tpm

tsm
ttm

std
tpd

tsd
ttd

sp
ss

stm
tpm

tsm
ttm

std
tpd

tsd
ttd

sp
ss

stm
tpm

tsm
ttm

std
tpd

tsd
ttd

Figure 2: Average query time of different agent-
RIBA-combinations

or different parameter sets. The thematic ranking is done
by the searching agent A itself.

On a document reference network with n documents and
a search query returning k documents the costs for each
query depend on the setting: an agent A searching by itself
without using a search agent gives O(n). A NIBA with a
preprocessed index can answer a search query in O(k) (per-
fect hash) to O(k+log n) (search tree/hierarchical hash). A
preprocessing p-RIBA adds structural information in O(1)
and A does thematic ranking in O(k) and sorts the docu-
ments in O(k log k), so we get O(log n + k log k) for a com-
plete search query.

A query specific on-demand ranking (s-RIBA) with a
small number of iterations j′ on a subnet D′ gives O(j′|D′|).
We estimate |D′| = |D|l̄ = kl̄ (with l̄ being the average num-
ber of references per document) and get O(j′kl̄) at search
time (with constant j′ and l̄: O(k)).

3. SIMULATION
While the described scenarios do not differ much with re-

spect to complexity, they have big differences in run time.
We implemented a prototypical MAS with different kinds
of seaching agents using different kinds of RIBAs on a doc-
ument network with n = 1000000 documents (files on the
local harddisk) with an average size of 700 bytes and an
average number of references l̄ = 10, which is handled by a
NIBA answering a search query by a list of URIs (filenames)
of matching documents. The whole MAS was implemented
in Ruby and run on one single computer in Linux single user
mode (no other processes/daemons running).

Searching is done by using three different kinds of RIBAs:
the preprocessing p-RIBA keeping a list of the preprocessed
ranks of all documents, the structural on-demand ranking
s-RIBA creating and ranking the subnet D′ for each new
search query, and the thematic-structural on-demand rank-
ing t-RIBA, working similar to the s-RIBA but addionally
ranking the documents in D by content. s-RIBA and t-
RIBA do j′ = 4 iterations for each ranking. The queries are
done by two different kinds of search agents: the s-Agent
sort the documents by the ranks given from the RIBA and
the t-Agent agent combining the given ranking with an own
thematic ranking to sort the documents.

Now for any combination of search agents and RIBAs the
time for a query returning 100, 500 or 1000 documents is

measured (see Fig. 2; the given timings are averages over
several queries). Any thematic ranking needs to read the
documents contents with disk IO dominating all other tim-
ings, therefor we run our tests in two modes: memory mode
(m), where all documents are kept in memory and no disk
IO occours, and the disk mode (d), where all documents are
read from disk any time needed.

The data (Fig. 2) collected from these simulations shows
the increase in cost from preprocessed (sp) over on-demand
structural (ss) to on-demand thematic ranking (stm, tpm,
tsm and ttm), with the most expencive cases being where
disk access is involved (std, tpd, tsd and ttd). The worst
case here is the combination t-Agent and t-RIBA, because
here all documents have to be read twice, nevertheless ttd
does not take twice the time of tpd (while ttm needs twice
the time of tpm). This is caused by the operating system
disk cache. We additionaly did tests with cache switched off
and got doubled runtime for ttd (not shown in the graph).

As expected the thematic ranking is expencive, even if no
disk access is involved, and even if the query size (the num-
ber of documents to be parsed to do the thematic ranking)
is small (k = 100).

Generally search time increases linearly in query size with-
in the given range (we did some tests with k = 10000 which
seem to hold this). The structural on-demand-ranking takes
five times longer than using preprocessed ranks (ss vs. sp),
thematic ranking causes 80 to 100 times longer runtime (stm,
tpm and tsm to sp), double thematic ranking doubles this
(ttm) and any disk access involved gives an additional factor
of 15, so the slowest combination t-Agent and t-RIBA with
disk access is more than 1000 times slower than the fastest
one (s-Agent and p-RIBA). And all this is magnitudes better
than a single agent scanning the document network by itself.

4. CONCLUSION
The MAS architecture for distributed information broker-

ing provides a flexible approach to enable search agents to
handle the problem of information overload. Using the dis-
tributed structure of the information brokering system the
searching agent benefits from the speed-up gained by using
preprocessing and search engine technology for information
retrieval provided by the NIBA while keeping flexibility and
control over the ranking process by choosing one of several
RIBAs and doing part of the ranking by itself.

5. REFERENCES
[1] S. Brin and L. Page. The anatomy of a large-scale

hypertextual Web search engine. Computer Networks
and ISDN Systems, 30(1–7):107–117, 1998.

[2] J. M. Kleinberg. Authoritative sources in a hyperlinked
environment. Journal of the ACM, 46(5):604–632, 1999.

[3] F. Menczer and R. K. Belew. Adaptive information
agents in distributed textual environments. In
Proceedings of the second international conference on
Autonomous agents, pages 157–164. ACM Press, 1998.

[4] G. Somlo and A. E. Howe. Querytracker: An agent for
tracking persistent information needs. AAMAS2004,
pages 488–495.

[5] H. Zhang, W. B. Croft, B. Levine, and V. Lesser. A
multi-agent approach for peer-to-peer based
information retrieval system. AAMAS2004, pages
456–463.

1276

