
Law-Governed Linda as a Semantics
for Agent Dialogue Protocols

Sylvie Doutre, Peter McBurney, Michael Wooldridge
Department of Computer Science

University of Liverpool
Liverpool L69 3BX
United Kingdom

{sd,p.j.mcburney,mjw}@csc.liv.ac.uk

ABSTRACT
Tuple spaces and the associated Linda language are a pop-
ular model for distributed computation, and Law-Governed
Linda (LGL) is a variant allowing processes to have differ-
ential and secure access to tuple spaces. We propose a form
of LGL as a means of implementing a multi-agent dialogue
game protocol, such that utterances under the dialogue pro-
tocol are interpreted as actions on particular tuple spaces
subject to certain laws. In this way, the tuple spaces, their
associated law and the actions on them may be viewed as a
semantics for the dialogue protocol syntax.

Categories and Subject Descriptors
F.1.1 [Computation by abstract devices]: Models of
computation—Relations between models

General Terms
Languages

Keywords
Dialogue, semantics

1. INTRODUCTION
Agent researchers and developers have devoted consider-

able attention recently to the design and study of protocols
for agent communication using dialogue games taken from
philosophy, e.g., [1, 6]. Much of this attention has focused on
the syntax of protocols, with perhaps less attention paid to
their semantics. There are several different functions that a
semantics for an agent communications language or dialogue
protocol may be required to serve: (i) to provide a shared
understanding to participants in a communicative interac-
tion of the meaning of individual utterances, of sequences of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

utterances, and of dialogues; (ii) to provide a shared under-
standing to designers of agent protocols and to the designers
(who may be different) of agents using those protocols of the
meaning of individual utterances, of sequences of utterances,
and of dialogues; (iii) to provide a means by which the prop-
erties of languages and protocols may be studied formally
and with rigor, either alone or in comparison with other
languages or protocols; (iv) to provide a means by which
languages and protocols may be readily implemented.

Our focus here is on semantics for agent protocols which
meet this last objective. Accordingly, we propose a seman-
tics for an agent interaction protocol which translates ut-
terances under the protocol into commands in a version of
the Linda distributed computing language, and into actions
on associated tuple spaces. Because of their adoption by
SUN (under the name Javaspaces)1 and by IBM (under the
name T-Spaces)2 , tuple spaces are a popular technology for
implementation of distributed computing applications.

The idea of an agent protocol implemented using Linda
has already been proposed in [7, 4], but the originality of
our work stands in the use of Law-Governed Linda (LGL), a
variant of Linda that allows a differential and secure access
to tuple spaces. This safety concerns is of great importance
in the implementation of agent dialogue protocols.

In section 2, we present the tuple space theory and LGL,
before indicating in section 3 how LGL can be used as a
semantics for dialogue systems.

2. TUPLE SPACES AND LGL
The theory of tuple spaces [3, 2] was proposed as a model

of communication between distributed computational enti-
ties. Linda is the associated programming language. The es-
sential idea is that computational agents connected together
may create named object stores, called tuples, which per-
sist, even beyond the lifetimes of their creators, until explic-
itly deleted. In their Javaspaces manifestation, tuples may
contain data, data structures, programs, objects or devices.
They are stored in tuple-spaces, which are blackboard-like
shared data stores, and are normally accessed by other agents
by associative pattern matching. The use of shared stores
means that communication between multiple agents can be
spatially and temporally decoupled. There are three basic
operations on tuple spaces: out, with which an agent cre-

1
See: http://java.sun.com/developer/products/jini/.

2
See: http://www.alphaworks.ibm.com/tech/tspaces/.

1257

ates a tuple with the specified contents and name in a shared
space accessible to all agents in the system; read, with which
an agent makes a copy of the contents of the specified tuple
from the shared space to some private store; and in, with
which an agent makes a copy of the contents of the specified
tuple from the shared space to some private store, and then
deletes it from the shared space.

Tuple spaces are public-write, public-read spaces: any en-
tity in the system may create a new tuple, and any entity
may delete an existing one. A refinement of Linda, Law-
Governed Linda (LGL) [5], established an administrative
layer which authorizes all attempts to execute out, in and
read commands according to pre-defined security and pri-
vacy policies.

More precisely, an LGL model is a 5-tuple 〈C,P , CS,L, E〉
where: C is a tuple space; P is a set of processes that interact
with each other via C; CS is a set of control states, one
being associated with each process, each one being a bag of
attributes; L is the global law of the system, which governs
the interactions of the various processes in P with the tuple
space C, and thus, with each other; E is a mechanism that
enforces the law.

L prescribes the effects that the events which occur at the
boundary between a process (called the home process of the
event) and the tuple space should have. These effects have
the form of a sequence of operations which have to be carried
out in response to the event. The effects may concern the
tuple space or the control state of a process. An example of
an event is an out(t) operation invoked by a process p: a
first effect may be to actually store the tuple t in the tuple
space, and a second one may be to update the control state
of p.

The law is global, in the sense that all processes have to
obey the same law. However, the application of the law for
a given event might depend on the control state of the pro-
cess in which the event happened. The law is enforced by
means of the distributed enforcement mechanism E , which
in fact consists in associating a controller with every process
in the system. This controller deals with the application of
the law according to the control state of the process, and
maintains this control state. For instance, an out(t) oper-
ation might be possible only if the control state contains a
special attribute which authorizes this operation.

3. LGL AND DIALOGUE SYSTEMS
The syntax of an agent dialogue protocol is generally based

on: a set of participants, who may have a role, and their
own knowledge and mental states; a context in which the
dialogue takes place; the definition of the locutions which
can be uttered in a dialogue; and a protocol, which specifies
the utterances permitted at each point in a dialogue.

LGL can be used as a semantics for such systems, by
associating elements of an LGL 5-tuple 〈C,P , CS,L, E〉 to
the elements of the dialogue system.

Hence, the context in which the dialogue takes place is
the tuple space C. To each participant is associated a pro-
cess of P and its controller from E , and a control state of
CS. The control state may contain attributes related to the
role, the knowledge or the mental states of the participant.
To each locution is associated a tuple. An utterance of a
locution then calls one or more events which may affect the
tuple space and/or the control state of the home process
associated to the participant making the utterance. Rules

of L are associated with the rules of the dialogue protocol.
L also contains rules that ensure that only the authorized
participants can insert, read or delete tuples. These rules
are enforced by the controller associated with each process.

4. CONCLUSION
We have presented a novel semantics for agent commu-

nications protocols in which utterances under a protocol
are translated into commands in Law-Governed Linda and,
through them, into actions on certain associated tuple spaces.
The semantics could readily be applied to dialogue protocols
such that of [1]. Translation of agent dialogue utterances
into the commands of a programming language may be seen
as merely mapping one syntax into another. However, the
LGL programming language commands are understood in
terms of their effects on actual shared memory stores (tuple
spaces), and so this translation may be viewed as a semantic
mapping — from agent utterances under a dialogue proto-
col to actions in a real world (online). As mentioned in the
Introduction, we believe that the popularity and simplicity
of tuple space models such as Javaspaces means that our
semantics will facilitate implementation of agent dialogue
protocols. The LGL semantics provides a connecting bridge
between the formal specification of a protocol, and its soft-
ware implementation.

5. ACKNOWLEDGMENTS
The authors are grateful for partial support from the Eu-

ropean Commission, through the ASPIC Project (IST-FP6-
002307).

6. REFERENCES
[1] L. Amgoud, N. Maudet, and S. Parsons. Modelling

dialogues using argumentation. In E. Durfee, editor,
ICMAS 2000, pages 31–38, Boston, 2000. IEEE Press.

[2] N. Carriero and D. Gelernter. Linda in context.
Communications of the ACM, 32(4):444–458, 1989.

[3] D. Gelernter. Generative communication in Linda.
ACM Trans. Programming Lang. & Systems,
7(1):80–112, 1985.

[4] J. P. McGinnis, D. Robertson, and C. Walton. Using
distributed protocols as an implementation of dialogue
games. In M. d’Inverno et al., editors, EUMAS 2003,
Oxford, 2003.

[5] N. H. Minsky and J. Leichter. Law-governed Linda as a
coordination model. In P. Ciancarini et al., editors,
Object-based Models and Languages for Concurrent
Systems, LNCS 924, pages 125–146. Springer, Berlin,
Germany, 1995.

[6] H. Prakken. On dialogue systems with speech acts,
arguments, and counterarguments. In M. Ojeda-Aciego
et al., editors, JELIA-2000, LNAI 1919, pages 224–238,
Berlin, 2000. Springer.

[7] W. Vasconcelos, D. Robertson, C. Sierra, M. Esteva,
J. Sabater, and M. Wooldridge. Rapid Prototyping of
Large Multi-Agent Systems through Logic
Programming. Annals of Mathematics and Artificial
Intelligence, special issue on Logic-Based Agent
Implementation, 41(2–4):135–169, 2004.

1258

