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ABSTRACT 
This paper presents a new and innovative approach called 
mission-based just in time agent generation. The approach allows 
agents to be constructed on the fly, at run-time and just when they 
are needed. This is a completely different approach to the 
traditional way of creating MAS in that agents are constructed at 
design time. We present the theoretical work behind the notion as 
well as an experimental result and future work.   

Categories and Subject Descriptors 
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence 
– Intelligent Agents. 

General Terms 
Algorithms, Design, Theory. 

Keywords 
TDG, Mission, eHermes, just in time, on demand, dynamic MAS. 

1. INTRODUCTION 
In this paper, we present an innovative and novel approach in 
building dynamic MAS. Different from the traditional approach 
where the agent developers pay a lot of attentions on concerns 
such as how each agent might communicate or cooperate with 
another, how it might negotiate or coordinate, learn, etc., this new 
approach allows the developers to very much concentrate on task 
or problem level semantic such as the business logic for the whole 
application. Thus our approach adds a new level of abstraction 
focusing on the purpose of the application instead of the process 
of creating the agents for the application. 

We refer our approach to as the mission-based just in time agent 
generation. This approach facilitates the ability of the system to 
generate a set of agents (mobile or stationary) on-demand. The 
on-demand notion here is referring to the timing of the agent 
generation; hence it means the agents are generated just when 
they are needed to perform some actions. Naturally they are 
removed from the system when their services are no longer 
required. Therefore, our approach guarantees that there are no 

“jobless” agents but only the useful ones are kept in the system. 

2. MISSION: THE FORMAL MODEL 
Software agents are constructed because they need to perform 
some actions; that is they have a mission to accomplish. 
Therefore, mission is one of the corner stones of our vision. 
Various quantities of agents where each of them has its own 
specialty are constructed depending of the mission in hand. A 
mission is formally modeled as a tuple of the form 

( , , , )M g P A Z= , where g denotes goal of the mission; in string, 
denotes a set of plans, P A denotes a set of mobile and/or 

stationary agents working on the mission and finally, and 
Z denotes a set of mission states. 

A plan p P∈ is as a DAG-based structure called TDG (Task 
Decomposition Graph) and is defined as a pair TDG=(T,L), where 
T is a set of tasks and L is a set of links between the tasks.  

A Task is defined as a tuple of the form (u,n,y,s,o), where u U∈ ; 
U is a set of unique IDs, n N∈ ; is a set of locations at which 
tasks are executed, 

N
y Y∈ ; Y={primitive, compound} denotes the 

task type, s S∈ ; S = {completed, pending, inprogress, failed, 
aborted, assigned} denotes the task status, and finally o O∈ ; O is 
a set of functions and/or logic calculations that must be 
performed. 

A link is defined as a tuple of the form ( , , )i jt t q ; 
, , ,i j t T q Q+∈ ∈ ∈ and Q={includes, dependson} is the link 

attributes. The includes attribute is used to capture the inclusion 
relationship between tasks. The dependson attribute is used to 
describe the dependency between tasks. In TDG, primitive tasks 
are atomic tasks and cannot depend on any other tasks 

Given a function :statusf T S→ which returns the status of the 
given tasks, a mission is called accomplished when all the tasks 
are completed, hence:  s.t. ( ) .statust T f t completed∀ ∈ =

A mission state is defined as a tuple of the form (V,R,e) where 
, R is a set task states and data defined as tuple of the form V T⊆

( , , ), , ,t d w t V d date w value∈ = = and finally, ; E defined as 
E={start, stop, resume, suspend, modify} is a set of events that 
caused the transition. When a mission is executed, the system 
actually executes the tasks specified in that plan. However, the 
system does not execute the tasks directly, rather through a set of 
agents. The number of agents generated depends on the number of 
tasks that needs executed at the time. Tasks are executed in the 
stratum by stratum fashion. Given a function 

e E∈

:typef T Y→ which 
returns the type of a task, a stratum ST is defined as: 

{ | , ( ) ( ) }type statusST t t T f t primitive f t pending= ∈ = ∧ = . 
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A compound task is changed into a primitive task when if all its 
direct sub tasks are completed. Once it becomes a primitive task 
then it can be executed in the next of execution cycle. Agents are 
not generated for each task in a stratum because it is not cost 
efficient. Instead, an optimization is carried out where the system 
tries to reduce the number of agents generated without 
compromising the mission execution’s elapsed time. Let 

cos cos cos( ) ( ( )) ( ( ))t t tf t f createAgent t f execute t= + be the function 
that calculates the cost for executing a task. For simplicity we 
assume that the cost for executing a task is constant ignoring 
factors such as the host locality and computing power. Therefore, 
optimization is achieved by reducing the cost of creating the 
agents. The cost of executing a mission is then defined as: 
| |

cos
1

( ),
T

t i i
i

f t t T
=
∑ ∀ ∈ . 

A critical time (CT) of a stratum  is the defined at the 
minimum amount of time required to accomplish all the tasks 
in . If the tasks in  are executed concurrently and given 

ST

ST ST
( ) ,f t t+

Θ ∈ ∈T

∈

; a function that returns the elapsed time of task 
t, then the critical time of  is defined as 

. Executing a mission can be 
regarded as executing the strata in the total order fashion, hence 

can only be executed once is completed. Given such 
condition and the fact that the strata are determined at run-time, 
the mission execution optimization must be conducted at the 
strata level and dynamically at run-time. Optimization is 
performed by allocating as many tasks as possible to an agent 
providing the elapsed time of a stratum does not exceed its critical 
time. This type of optimization is classified as an off-line bin-
packing problem. Finding an optimal solution to this class of 
problem has been proven to be an NP-Hard problem and hence 
we use a near optimal solution; FDD (First-Fit Decreasing) [1]. 
The tasks in each stratum are sorted in a decreasing order based 
on their 

ST
max{ ( ) | , }ST i iCT f t t ST i +

Θ= ∈

iST 1iST −

fΘ value. The size of the bin is then 1( )f tΘ . The tasks are 
then separated into clusters where the total value of fΘ in each 

cluster is less or equal to 1( )f tΘ , that is 1
2

( ) ( )
n

i
i

f t f tΘ Θ
=

≤∑ . 

3. EXPERIMENTAL RESULT 
One of the experimentations we have conducted is the test to see 
how well the optimization strategy works. Our concern is whether 
the reduction of the number of agents working in the mission 
affects the elapsed time of the mission itself. In this test, the 
system is given a mission that comprises of 55 tasks. The system 
runs the mission 18 times. In the 1st run, the optimization is turned 
off while in the subsequent runs it is turned on. In each run we 
measure the mission execution elapsed time and number of agents 
generated. From the graph in Figure 1, it shows that the number of 
agents is successfully reduced from 55 agents down to the 
minimum of 13 agents in run no 14. The graph in Figure 2 shows 
the elapsed times of each run. From this graph it can be seen that 
the reduction of the number of agents does not affect the mission 
completion time. These graphs have show us that the optimization 
strategy via cost/benefit analysis that we used in the system has 
achieved its goal, that is, reducing the number of agents working 
in the mission with not too much affect on the mission elapsed 
time. 
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4. CONCLUSION AND FUTURE WORK 
We have presented an innovative and novel notion we called 
mission-based just in time agent generation. Moving away from 
the traditional style of constructing agents, our approach 
emphasizes on the timing of agent generation. That is, only 
generate the agents just when they are needed and remove them 
when their service is no longer needed. 

Some of the benefits of this approach are: (i) the dynamic creation 
of MAS. Now MAS do not need to be constructed at design time, 
rather dynamically created at run-time, (ii) right amount of agents 
with appropriate type of skill sets. Agents in the MAS are 
guaranteed to have the skill sets needed to achieve the mission, 
(iii) an ability to stop, suspend, resume and move a mission to any 
host, (iv) adaptivity and robustness. Since the agents can be 
dynamically created then incapable agents can be replaced at run-
time with the capable ones. 

Future work includes: (i) task reallocation enhancement where 
agents are not destroyed once they have completed their 
assignment, rather reused. These agents are given a new set of 
tasks with a new set of skills needed to complete the new tasks; 
(ii) since the TDG can be potentially large then there is a need to 
be able to divide it into sub-TDGs. These sub-TDGs will be 
managed by local agents who will report to one who control the 
overall mission execution. Furthermore, sub-TDGs can be 
transferred and executed remotely. 
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