
Just in Time Mobile Agent Generation and Management
G. Jayaputera, S. W. Loke, A. Zaslavsky

School of Computer Science and Software Engineering, Monash University
900 Dandenong Road, Caulfield East, Victoria 3145, Australia

+61 3 9903 2787
{glenn.jayaputera, seng.loke, arkady.zaslavsky}@infotech.monash.edu.au

ABSTRACT
This paper presents a new and innovative approach called
mission-based just in time agent generation. The approach allows
agents to be constructed on the fly, at run-time and just when they
are needed. This is a completely different approach to the
traditional way of creating MAS in that agents are constructed at
design time. We present the theoretical work behind the notion as
well as an experimental result and future work.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence
– Intelligent Agents.

General Terms
Algorithms, Design, Theory.

Keywords
TDG, Mission, eHermes, just in time, on demand, dynamic MAS.

1. INTRODUCTION
In this paper, we present an innovative and novel approach in
building dynamic MAS. Different from the traditional approach
where the agent developers pay a lot of attentions on concerns
such as how each agent might communicate or cooperate with
another, how it might negotiate or coordinate, learn, etc., this new
approach allows the developers to very much concentrate on task
or problem level semantic such as the business logic for the whole
application. Thus our approach adds a new level of abstraction
focusing on the purpose of the application instead of the process
of creating the agents for the application.

We refer our approach to as the mission-based just in time agent
generation. This approach facilitates the ability of the system to
generate a set of agents (mobile or stationary) on-demand. The
on-demand notion here is referring to the timing of the agent
generation; hence it means the agents are generated just when
they are needed to perform some actions. Naturally they are
removed from the system when their services are no longer
required. Therefore, our approach guarantees that there are no

“jobless” agents but only the useful ones are kept in the system.

2. MISSION: THE FORMAL MODEL
Software agents are constructed because they need to perform
some actions; that is they have a mission to accomplish.
Therefore, mission is one of the corner stones of our vision.
Various quantities of agents where each of them has its own
specialty are constructed depending of the mission in hand. A
mission is formally modeled as a tuple of the form

(, , ,)M g P A Z= , where g denotes goal of the mission; in string,
denotes a set of plans, P A denotes a set of mobile and/or

stationary agents working on the mission and finally, and
Z denotes a set of mission states.

A plan p P∈ is as a DAG-based structure called TDG (Task
Decomposition Graph) and is defined as a pair TDG=(T,L), where
T is a set of tasks and L is a set of links between the tasks.

A Task is defined as a tuple of the form (u,n,y,s,o), where u U∈ ;
U is a set of unique IDs, n N∈ ; is a set of locations at which
tasks are executed,

N
y Y∈ ; Y={primitive, compound} denotes the

task type, s S∈ ; S = {completed, pending, inprogress, failed,
aborted, assigned} denotes the task status, and finally o O∈ ; O is
a set of functions and/or logic calculations that must be
performed.

A link is defined as a tuple of the form (, ,)i jt t q ;
, , ,i j t T q Q+∈ ∈ ∈ and Q={includes, dependson} is the link

attributes. The includes attribute is used to capture the inclusion
relationship between tasks. The dependson attribute is used to
describe the dependency between tasks. In TDG, primitive tasks
are atomic tasks and cannot depend on any other tasks

Given a function :statusf T S→ which returns the status of the
given tasks, a mission is called accomplished when all the tasks
are completed, hence: s.t. () .statust T f t completed∀ ∈ =

A mission state is defined as a tuple of the form (V,R,e) where
, R is a set task states and data defined as tuple of the form V T⊆

(, ,), , ,t d w t V d date w value∈ = = and finally, ; E defined as
E={start, stop, resume, suspend, modify} is a set of events that
caused the transition. When a mission is executed, the system
actually executes the tasks specified in that plan. However, the
system does not execute the tasks directly, rather through a set of
agents. The number of agents generated depends on the number of
tasks that needs executed at the time. Tasks are executed in the
stratum by stratum fashion. Given a function

e E∈

:typef T Y→ which
returns the type of a task, a stratum ST is defined as:

{ | , () () }type statusST t t T f t primitive f t pending= ∈ = ∧ = .

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
AAMAS'05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 …$5.00.

1237

A compound task is changed into a primitive task when if all its
direct sub tasks are completed. Once it becomes a primitive task
then it can be executed in the next of execution cycle. Agents are
not generated for each task in a stratum because it is not cost
efficient. Instead, an optimization is carried out where the system
tries to reduce the number of agents generated without
compromising the mission execution’s elapsed time. Let

cos cos cos() (()) (())t t tf t f createAgent t f execute t= + be the function
that calculates the cost for executing a task. For simplicity we
assume that the cost for executing a task is constant ignoring
factors such as the host locality and computing power. Therefore,
optimization is achieved by reducing the cost of creating the
agents. The cost of executing a mission is then defined as:
| |

cos
1

(),
T

t i i
i

f t t T
=
∑ ∀ ∈ .

A critical time (CT) of a stratum is the defined at the
minimum amount of time required to accomplish all the tasks
in . If the tasks in are executed concurrently and given

ST

ST ST
() ,f t t+

Θ ∈ ∈T

∈

; a function that returns the elapsed time of task
t, then the critical time of is defined as

. Executing a mission can be
regarded as executing the strata in the total order fashion, hence

can only be executed once is completed. Given such
condition and the fact that the strata are determined at run-time,
the mission execution optimization must be conducted at the
strata level and dynamically at run-time. Optimization is
performed by allocating as many tasks as possible to an agent
providing the elapsed time of a stratum does not exceed its critical
time. This type of optimization is classified as an off-line bin-
packing problem. Finding an optimal solution to this class of
problem has been proven to be an NP-Hard problem and hence
we use a near optimal solution; FDD (First-Fit Decreasing) [1].
The tasks in each stratum are sorted in a decreasing order based
on their

ST
max{ () | , }ST i iCT f t t ST i +

Θ= ∈

iST 1iST −

fΘ value. The size of the bin is then 1()f tΘ . The tasks are
then separated into clusters where the total value of fΘ in each

cluster is less or equal to 1()f tΘ , that is 1
2

() ()
n

i
i

f t f tΘ Θ
=

≤∑ .

3. EXPERIMENTAL RESULT
One of the experimentations we have conducted is the test to see
how well the optimization strategy works. Our concern is whether
the reduction of the number of agents working in the mission
affects the elapsed time of the mission itself. In this test, the
system is given a mission that comprises of 55 tasks. The system
runs the mission 18 times. In the 1st run, the optimization is turned
off while in the subsequent runs it is turned on. In each run we
measure the mission execution elapsed time and number of agents
generated. From the graph in Figure 1, it shows that the number of
agents is successfully reduced from 55 agents down to the
minimum of 13 agents in run no 14. The graph in Figure 2 shows
the elapsed times of each run. From this graph it can be seen that
the reduction of the number of agents does not affect the mission
completion time. These graphs have show us that the optimization
strategy via cost/benefit analysis that we used in the system has
achieved its goal, that is, reducing the number of agents working
in the mission with not too much affect on the mission elapsed
time.

Agent Reduction Count

0

10

20

30

40

50

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Run Number

A
ge

nt
 C

ou
nt

Mission Elapsed Time

79.5

80

80.5

81

81.5

82

82.5

83

83.5

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Run Number

E
la

ps
ed

 T
im

e
(S

ec
)

4. CONCLUSION AND FUTURE WORK
We have presented an innovative and novel notion we called
mission-based just in time agent generation. Moving away from
the traditional style of constructing agents, our approach
emphasizes on the timing of agent generation. That is, only
generate the agents just when they are needed and remove them
when their service is no longer needed.

Some of the benefits of this approach are: (i) the dynamic creation
of MAS. Now MAS do not need to be constructed at design time,
rather dynamically created at run-time, (ii) right amount of agents
with appropriate type of skill sets. Agents in the MAS are
guaranteed to have the skill sets needed to achieve the mission,
(iii) an ability to stop, suspend, resume and move a mission to any
host, (iv) adaptivity and robustness. Since the agents can be
dynamically created then incapable agents can be replaced at run-
time with the capable ones.

Future work includes: (i) task reallocation enhancement where
agents are not destroyed once they have completed their
assignment, rather reused. These agents are given a new set of
tasks with a new set of skills needed to complete the new tasks;
(ii) since the TDG can be potentially large then there is a need to
be able to divide it into sub-TDGs. These sub-TDGs will be
managed by local agents who will report to one who control the
overall mission execution. Furthermore, sub-TDGs can be
transferred and executed remotely.

ACKNOWLEDGEMENT
Support from the ARC Linkage Grant LPO211384 and Microsoft
Research Asia is thankfully acknowledged.

5. REFERENCES
[1] H. Kellerer, U. Pferschy and D. Pisinger, Knapsack

Problems, Springer, 2004.

1238

