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1. INTRODUCTION 
In this study we provide a strategy that maximizes the expected 

revenues of the auctioneer in an expanding multi-unit auction. We 
model the auction process as a state graph in which nodes are 
auction states and edges are transitions. With this model, finding 
the optimal strategy is equivalent to solving a search problem on 
the state graph. We prove that the search problem to be solved, 
although seemingly exponentially complex, is actually linearly 
bounded. Based on this result, we introduce an informed strategy 
that optimizes the auctioneer’s revenue.  

In an expanding multi-unit auction, one item of a good is 
initially offered to the bidders. The bidders are free to raise their 
bid and the auctioneer is free to raise the number of units offered 
by one each time a new bid is received. The most significant 
factor affecting the auctioneer’s revenue in an expanding multi-
unit auction is the decision in which context to raise the number 
of units offered and in which to preserve it. Naïve auctioneer 
strategies for increasing the number of items are sub-optimal.  

A simple but naive strategy for addressing this issue is the step 
function strategy. Such a strategy is used by, e.g., the auction site 
Olsale [1]. The strategy is based on a step function set by the 
auctioneer; the step function is composed of <price level, number 
of units> pairs that determine the number of units to be offered 
when the current bid reaches a certain level. Figure 1 depicts this 
strategy. When the current bid reaches p1 the auctioneer offers one 
more unit for sale raising the total number of units offered to 2. If 
the price exceeds p2 the auctioneer offers an additional unit 
raising the number of units offered to 3, and so on. 

 
Figure 1. Step function strategy 

The step function strategy is simple to implement, however it is 
not trivial to configure its parameters to maximize the auctioneer’s 
revenues. The same step function may yield higher revenues in 
one context of execution and lower revenues in others. 

2. THE INFORMED STRATEGY 
We model the problem using a state graph, the nodes 

describing the states of the auction and edges describe the 
transitions between states. Each state S has the following 
properties:  
� The price a bidder has to pay to join the winner list denoted 

by ld where d is bid sequence. For instance, l2 denotes the 
price a bidder has to pay to join the winner list after 2 bids 
have already been submitted and accepted by the auctioneer. 
Note that all states that may be formed after the auctioneer has 
received d bids share the same price level ld. 

� The number of units the auctioneer is willing to sell at price ld 
denoted by nS. 

� A list of maximal bidding values1 (MBV) of the bidders that 
current participate in the auction. These bidders may part of 
the winner list. The list contains bidders, which are currently 
in the winner list, or bidders that are willing to pay more than 
ld and therefore may join the winner list in a later stage of the 
auction execution. We denote the list by BS. 

                                                                 
1 The maximal bidding value of each bidder is the maximal bid 

he/she is willing to offer during the auction, this value may 
differ from his/her private value depending on the strategy 
adapted by him/her. 
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� A list of MBVs of the bidders in the winner list. We denote 
this list by w

s
B . Clearly, s

w BB
s
� . 

Figure 2 illustrates an auction execution state graph. Each node 
Si in the graph consists of its bidder list Bi. The initial number of 
units offered is n0 and the reservation price set initially by the 
auctioneer is l0. The auctioneer decision to raise the number of 
units is reflected in the graph by traversing to the right (a raise 
transition). The descendent state created is characterized by an 
additional unit offered and a price level that is higher by 

�
. 

When the auctioneer wishes to preserve the number of units the 
graph branches to the left (a preserve transition) forming a state 
that is characterized by the same number of units offered and a 
price level that is higher by 

�
. 
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Figure 2.  An auction execution state graph 

 
In developing a strategy that is based on the state tree 

described, we face two problems. Firstly, the MBVs of bidders 
entering the auction are unknown. Secondly, the search for the 
most beneficial strategy may be computationally expensive. 

The first problem can be addressed by assuming a probability 
distribution function fi of maximal bidding value for each bidder 
bi. Such distributions can be learned from historical biddings. 
Using this data, we devise an informed strategy. The strategy is a 
simulation-based. Given the current state of the auction, it 
attempts to determine the auctioneer’s action that would yield the 
best results. It does this by generating MBV vectors of bidders 
participating in an auction and the current state of the auction. To 
find the auctioneer's best choice, a search problem that takes into 
account all possible scenarios should be solved for each MBV 
vector generated. A solution determines whether the auctioneer 
should raise the number of units sold by one, or preserve it. 

Note that since the branching factor of the tree is 2, given the 
reservation price l0 and the maximal bidding value of the bidders 
participating lmax, in the worst case the number of bid levels will 
be produced when only one unit is offered during the lifetime of 
the auction. Thus, the number of bid levels is bounded by (lmax - 
l0)/
�

 and the number of states in the state tree is bounded by 

)2( /)( 0max ��llO . Therefore, computing the complete state tree is 
too expensive. In an extended version of this paper we prove that 
the complexity of the search problem can be reduced to linear. 

The algorithm below describes the implementation of the 
informed strategy within the auction execution process. The time 
allocated by the auctioneer for computing the optimal strategy is 
denoted by tp, and the time in which a new bid that raises the price 
of the good sold is received is denoted by t0: 
1. 0Pr,0,0 ��� eservennRaisenowt  

2. Generate an MBV vector vsample based on the probability 
distribution functions of participating bidders. 

3. Using the informed strategy compute the optimal action to be 
taken based on vector vsample. If raising the number of units 
sold by one is the best course of action then 

1�� nRaisenRaise , otherwise 
1PrPr �� eserveneserven . 

4. If now< t0+ tp go to step 2. 
5. If eservennRaise Pr�  raise the number of units sold by 

one, if eservennRaise Pr�  preserve the number of units 
sold. Otherwise choose one of the operators randomly. 

For a given state Si we define its preserve branch denoted by 
preserve_branch(Si) as the set of states formed by iteratively 
traversing left starting at state Si until we reach a terminating state. 
In a similar manner we define raise_branch(Si). 
 
Theorem 1. Let T0 be a state tree whose root is S0. We show that 
the set of terminating states in T0 is fully covered by a subset of 
terminating states. The subset, *

0TS , is defined as the set of 

terminating states reached by traversing on raise_branch(Si) for 
each state Si in preserve_branch(S0). Each traversal from state Si 
to its terminating state in raise_branch(Si) is bounded by O((lmax - 
l0)/
���

 states. In the worst case the size of preserve_branch(S0) is 
(lmax - l0)/

�
therefore the analysis of all states in 

preserve_branch(S0) is bounded by ))/(( 2
0max ��llO . 

We define *
0TS  formally as follows. Let 

)(_ 00
sbranchpreservePT 	  and 

�

0

)(_
0

T
Ps

sbranchraiseRT




	

 then 

}0)deg(|{
000

*
	�
	 sPRsS TTT

. In this theorem we claim 

that *
00 TT SS 	 . That is, *

0TS  covers all the terminating states in 

the state tree produced by the auction execution. The definitions 
of Theorem 1 are illustrated in Figure 3.�  

The proof is omitted for space reasons. From Theorem 1 it 
follows that one needs to search only ))/(( 2

0max ��llO  nodes to 

find the best action the auctioneer should take. The proof is 
omitted for space reasons. Based on theorem 1, one can further 
reduce the complexity to linear. This makes the suggested strategy 
feasible for real expanding auctions. Empirical results have shown 
that under diverse probability distribution functions the informed 
strategy we introduced produces significant gains. 
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Figure 3. 
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TTT PRS  definitions: 
0TP  states are rectangle 

shaped, 
0TR  states are marked with a thick border style, *

0TS  

are filled shapes. 
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