
Comparative Analysis of Top–Down and Bottom–up
Methodologies for Multi–Agent System Design

Valentino Crespi
Dept. Computer Science
Cal State Los Angeles

Los Angeles, CA

vcrespi@calstatela.edu

Aram Galstyan
Information Sciences Institute
Univ. of Southern California

Marina del Rey, CA

galstyan@isi.edu

Kristina Lerman
Information Sciences Institute
Univ. of Southern California

Marina del Rey, CA

lerman@isi.edu

ABSTRACT
Traditionally, top-down and bottom-up design approaches have com-
peted with each other in Algorithmics and Software Engineering.
In the top-down approach, design process starts with specifying the
global system state and assuming that each component has global
knowledge of the system, as in a centralized approach. The so-
lution is then decentralized by replacing global knowledge with
communication. In the bottom-up approach, on the other hand, the
design starts with specifying requirements and capabilities of indi-
vidual components, and the global behavior is said to emerge out
of interactions among constituent components and between compo-
nents and the environment. In this paper we present a comparative
study of both approaches with particular emphasis on applications
to multi–agent system engineering.

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Multiagent systems

General Terms
Design, Algorithms

Keywords
MAS design, Top Down, Bottom–up

1. INTRODUCTION
Traditionally, two different design methodologies, called top-

down and bottom-up have competed with each other. In the top-
down approach, the design starts from the top with the assump-
tion that resources are globally accessible by each subcomponent
of the system, as in the centralized case. The specification is then
defined in terms of the global systems state and implies that each
individual component should be able to retrieve or estimate, with
sufficient accuracy and within a reasonable time delay, resources
that are local to other agents of the system. Under these conditions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

the properties of a classical centralized solution to the global spec-
ification are expected to hold, up to some tolerable performance
degradation, also in a decentralized environment. In the bottom-up
methodology, on the other hand, the rules of agent interactions are
typical. In systems designed starting from the bottom, the global
state of all the components is assumed to be impossible to obtain,
and the desired collective behavior is said to emerge from interac-
tions among individual agents and between the agents and the envi-
ronment. In summary, in the top-down design the final distributed
solution is obtained as a process of relaxation of the constraints
that require instant access to remote resources with infinite preci-
sion. The bottom-up design starts with a rigorously pre–decided set
of rules for the individual behaviors and local interactions and then
proceeds with the inference of the global emergent behavior.

While the question of which design is appropriate for a given
system extends over the most diverse areas in computer science and
computer engineering, in this paper we compare two approaches in
a typical domain of multi-agent systems engineering.

2. FOUNDATIONS OF THE DESIGN

2.1 Top Down
The top-down methodology has been recently developed to pro-

duce provably performant designs relative to what is achieved in
classical centralized control theory. This approach has been also
successfully applied to problems of sensor localization, distributed
vehicle flow control and distributed surveillance [1, 2]. Ideally the
designer should start from the definition of an objective that in-
volves global quantities, then devise a centralized optimization al-
gorithm and finally proceed to the synthesis of the decentralized
(agent-based) solution. The design process consists of three steps:
modeling, synthesis and analysis/optimization.

Modeling: In this phase the designer identifies and categorizes
system’s agents according to the following taxonomy derived from
classical Control Theory. Information agents gather information
about the environment and allow its dissemination (analogous to
“sensors” in classical systems theory). Modeling agents collect
data from many information agents and update internal estimates of
the “real world” state (analogous to state estimators, like Kalman
filters, in classical systems theory). Planning agents use the current
world state estimates, the viable action or control options and the
current goals to plan new actions to carry out. These agents may
need to task brokering agents (that have no conterpart in classical
control theory) to report on available resources such as additional
state and action information.

Synthesis: Agent controllers are designed following the lines of
a three-stage top-down process: a) At first, it is assumed that each

1159

agent can access remote resources local to other agents instantly
and with infinite precision (communication delays and bandwidth
limitations neglected). So a first centralized solution aimed at op-
timizing a global objective is designed; b) Next, limitations of the
distributed environment are applied and so the visibility of each
agent gradually reduced. Consequently inter-agent communication
issues arise for now each agent needs to replace global resources
with local resources. The result is a fully decentralized solution;
c) Finally, the obtained solution must be calibrated via parameter
tuning.

In order to solve problems of sensor localization and vehicle flow
control, Crespi and Cybenko a) defined a suitable artificial potential
function V (X) of global quantities X = {x1, x2, . . . , xn} spread
over the system’s agents. Then b) they applied the gradient de-
scent method to minimize V : xi(t + 1) = xi(t) − γt∇xi

V (X),
where xi(t) was intended to be local to agent i and∇xi

V (X) was
a function of the global quantities X; and finally, c) they replaced
∇xi

V (X) with a locally computable estimate and proved conver-
gence properties of the tunable solution.

Analysis/Optimization: The inter-agent communication must
be optimized in order for the distributed system to perform as pre-
dicted at the beginning of the synthesis phase. The Analysis con-
ducted in this phase may lead to a review (feedback) of the original
Modeling of the agent system thus creating a cycle.

2.2 Bottom–Up
The bottom-up design methodology is very popular for produc-

ing autonomous, scalable and adaptable systems often requiring
minimal (or no) communication. The design process consists of
three steps: Synthesis, Modeling and Analysis, and Optimization.

Synthesis: In the Synthesis phase one has to define the agent
controller which can be described by an automaton that is the be-
havioral representation of an agent. In the case of a reactive agent
the controller can be characterized by a finite state automaton (FSA).
Each state of the automaton represents the action or a behavior the
agent is executing, with transitions coupling it to other states. Con-
sequently, the behavioral dynamics of a reactive agent can be con-
sidered as an ordinary Markov process.

Modeling and Analysis: Once a controllers for individual agents
have been constructed, one need to develop a mathematical model
of the collective behavior. Remarkably, the finite automaton of
a single agent in many cases can be used for adequately describ-
ing the macroscopic or collective behavior of a large-scale system
composed of many such controllers. In particular, Lerman et. al.
have developed models based on Stochastic Master Equation and
its first moment, Rate Equation, to describe the average collec-
tive behavior from the details of the agent automaton. The model
consists of coupled differential equations describing how the aver-
age group behavior changes in time. This modeling approach is
based on the theory of stochastic processes. For instance, in aplly-
ing this approach to robotic systems, one does not assume knowl-
edge of agent’s exact trajectories; instead, we model each agent as
a stochastic process and derive a probabilistic model of the aggre-
gate, or average, behavior [3, 4].

Optimization: Mathematical model can be used not only to val-
idate the controller, but also to estimate individual parameters that
optimize group-level performance. Using mathematical analysis
one can finally answer a number of design questions. Controller
synthesis may produce a range of values for internal parameters
that result in a valid controller, but these different controllers might
result in different group–level efficiency. For example, some pa-
rameter values may lead to faster convergence to the desired steady
state, while others will lead to smaller deviations from it. More-

over, in a case when agent’s controller is represented as a Finite
State Automata (FSA), analysis can be used not only for estimat-
ing the parameters of the controller, but also suggesting appropriate
structure and transition probabilities for the FSA, so that the desired
global behavior will be achieved in average.

3. CONCLUSION
In conclusion, we suggest that the main difference between two

approaches is the requirements on the availability of local resources
to the rest of the system. This requirement is very important for top-
down approach, while not so imperative for the bottom-up. More
generally, we have identified the following three main elements in
our comparison:

Specifications: Bottom–up approach starts with the specifica-
tion of the individual agent behavior through a set of agent capa-
bilities or rules of engagement which delimit the set of obtainable
group–level behaviors. The top-down approach starts with global
requirements as in a centralized control system and translates those
into necessary agent capabilities. Note that the last step assumes
implicitly that the global system requirements can be delegated to
individual components. For some tasks this might be not straight-
forward.

Communication and Noise: Communication is important in
both the approaches but its vision is completely different if not op-
posite. In the top-down case a form of explicit communication is
a requirement implied by the necessity for individual components
to access remote resources according to the global design. In the
bottom-up case, communication is optional in so far as the impact
of the propagation of the information throughout the system on the
emergent behavior is more like a positive side effect of the design
rather than an expected feature required in the specification.

Analysis and performance guarantees: Both approaches are
similar in their reliance on simulations to analyze global system
properties. Whenever mathematical analysis is possible, however,
two approaches differ in their choice of mathematical tools. Top-
down approach usually utilizes mathematically rigorous tools such
as Classical and Stochastic Control Theory, Optimization Theory,
Parameter Estimation, whereas the bottom–up design relies heav-
ily on mean–field methods such as Master equation, mean–field
statistical mechanics, dynamical system theory, etc. Hence, in the
top-down approach it is possible to establish stringent bounds on
the system behavior and make performance guarantees within its
range of applicability, while the analysis tools in the bottom-up ap-
proach can be extremely efficient in describing the average system
behavior.

4. REFERENCES
[1] V. Crespi and G. Cybenko. Decentralized Algorithms for

Sensor Registration. In Proceedinds of the 2003 International
Joint Conference on Neural Networks (IJCNN2003), Portland,
Oregon, July 2003.

[2] V. Crespi, G. Cybenko, D. Rus, and M. Santini. Decentralized
Control for Coordinated flow of Multiagent Systems. In
Proceedings of the 2002 World Congress on Computational
Intelligence. Honolulu, Hawaii, May 2002.

[3] K. Lerman and A. Galstyan. Mathematical model of foraging
in a group of robots: Effect of interference. Autonomous
Robots, 13(2):127–141, 2002.

[4] K. Lerman, A. Galstyan, A. Martinoli, and A. Ijspeert. A
macroscopic analytical model of collaboration in distributed
robotic systems. Artificial Life Journal, 7(4):375–393, 2001.

1160

