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ABSTRACT
A survivable agent system depends on the incorporation of many
recovery features. However, the optimal use of these features re-
quires the ability to assess the actual state of the agent system accu-
rately at a given time. This paper describes an approach for the es-
timation of the state of an agent system using Partially-Observable
Markov Decision Processes (POMDPs). POMDPs are dependent on
a model of the agent system – components, environment, sensors,
and the actuators that can correct problems. Based on this model,
we define a state estimation for each component (asset) in the agent
system. We model a survivable agent system as aPOMDPthat takes
into account both environmental threats and observations from sen-
sors. We describe the process of updating the state estimation as
time passes, as sensor inputs are received, and as actuators affect
changes. This state estimation process has been deployed within
the agent system that runs the Ultralog application and tested using
Ultralog’s survivability tests on a full-scale (1000+) agent system.
This test successfully ran a long-running logistics application in an
unstable environment with high failure rates.

1. INTRODUCTION
This paper describes the approach for estimating the state of an

agent system, i.e., the composite state of its agents and other com-
ponents, as implemented within the Ultralog [5] Adaptive Defense
Coordinator (ADC) [6]. A key aspect of the Ultralog system is its re-
silience to failures and attacks. The Ultralog application runs over
an agent society that is assumed to exist in an unstable environment,
both with respect to natural and externally-induced failures. Re-
silience to failure is accomplished using a variety of independently
developed security- and robustness- oriented defense mechanisms,
some of which operate in a proactive and some in a reactive man-
ner. Within the defenses, sensors detect problems within the agent
system, and actuators respond with some remediation action. For
example, an agent health sensor may detect that an agent has failed,
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and a restart action will restart that agent. Alternatively, if there is
an elevated security threat, an action may be taken to raise encryp-
tion levels for messages between certain agents.

While it is desirable for numbers of independently-developed
sensors and actuators to be able to effect changes in an agent sys-
tem, this approach has the effect that the sensors and actuators may
interfere with each other, causing the outcome of their operation to
be destructive rather than constructive. For instance, an agent may
deliberately disconnect itself temporarily, but a “liveness” sensor
may report the agent “down”, possibly causing an inappropriate
decision to restart the agent on another machine.

The Adaptive Defense Coordinator (ADC) presides over the sen-
sors and actuators. It considers the entire set of sensor outputs that
it receives, and attempts to determine an overall picture of the state
of the agent system and its components. This paper examines this
state estimationcomponent of theADC. Based on this overall pic-
ture of the agent system state, theADC also may enable one or
more nonconflicting actions at any given time, aiming to improve
the overall health of the agent system.

2. MODELING THE AGENT SYSTEM
State estimation operates over a domain model representing the

agent-based system, its operational environment, and its applica-
tions. At the heart of the domain model is a notion of anasset–
a distinguishable, monitored entity within the agent-based system.
An asset can be an agent, a node that agents reside on, or an ele-
ments of the agent’s infrastructure. Each asset has a specific type
that provides the modeling information necessary to describe the
state of an asset. Each asset type model is composed of a set of
state dimensionsthat capture the salient attributes of the asset.

The state of an asset is monitored using one or moresensors,
each which observes a specific asset, and providesdiagnoses. The
state estimation process examines the collective set of diagnoses
for a given asset to obtain an overall, composite view of the state of
that asset. Anactuatorcan affect the state of an asset. If an asset
is not in a “good” state, then one or more actuators may be invoked
by theADC in an attempt to rectify the problem.

The environment in which the agent-based system is running is
modeled usingthreat models. Threats are environmental factors
that may affect assets, such as natural computer failures or deliber-
ate attempts at security compromise. Each threat may (with some
probability) cause one or moreevents, the effects of which may cor-
respond to an actual change in the state of some asset. Effects may
be transitive– for instance, if a node fails, then all of the agents
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that reside on that node also will fail. An event could also trigger
other events that would in turn affect other assets.

The individual models for the assets, sensors, environment and
actuators are the components of an overall model of the assets in
the Ultralog system. The discrete, probabilistic nature of these
components and the inherent hidden state of the assets, make the
partially observable Markov decision process (POMDP) model [2] a
very good way to formally capture all these components. We adapt
the POMDP model framework to the specifics of theADC require-
ments, allowing us to leverage existing state estimation techniques.

Generally,POMDP models are created with the intent of using
automated techniques for finding optimal or near optimal policies
of action. In theADC, we use thePOMDPmodel as a framework for
calculating state estimations in discrete models with hidden state.
However, we use heuristic techniques, rather than computing the
optimal policy, to determine theADC actions. To keep the com-
plexity of the model to a manageable size, we use a series of in-
dependentPOMDP models, one for each state dimension of each
asset type. This makes a relatively strong assumption about the
independence of asset state dimensions, sensors, events and actu-
ators; however, experiments have proven the effectiveness of the
ADC nonetheless.

3. STATE ESTIMATION
Due to uncertainties related to the environment, the sensors, and

the agent system, it is rarely possible to get a definitive understand-
ing of the true state of a given agent at a specific time. Instead, we
use a state estimation for an agent defined as a probability distribu-
tion across the states in each dimension. These probabilities reflect
the uncertainties associated with the asset’s environment, including
uncertainties about diagnoses, threats, events, and actuator effects.

The POMDP model parameters for the state transition function
are:� ������ �� where� is the current state,�� the ending state and
� the action. In the Ultralog model, there are two separate condi-
tions under which assets can undergo state transitions: threat-based
events and actuator usage. Actuator-based state transitions are di-
rectly modeled so that each action corresponds to one of the actua-
tors. Most of the currently implemented Ultralog models use deter-
ministic state transitions for the actuators, though our development
of the state estimation computations makes no such assumption.

The probabilities for threat-based state transitions are kept sepa-
rately from the actuator-based state transitions. They are also time-
dependent, something not normally present in aPOMDP model.
This means that thePOMDPmodel parameters for threat-based state
transitions must be computed dynamically based on the elapsed
time and all of the events that could have affected the asset. The
formulas for computing these probabilities are complex, as multi-
ple events (both direct and transitive) may have been involved.

The observation function parameters of aPOMDP are� ����� ��
where� an observation,� is a state and� the action. Each observa-
tion corresponds to a sensor diagnosis value. We assume that these
are not dependent on the action chosen, amd therefore model these
conditional probabilities directly within the sensor models.

In the state estimation process, theADC keeps a state estimation
for each asset and continually updates this as it receives new infor-
mation and as time passes. The initial state estimation for an asset
is explicitly given in the model and usually reflects a “good” initial
state. There are two system situations which trigger theADC to up-
date the state estimation for an asset: sensor diagnosis arrival and
actuator completion. Both these state estimation calculations must
also account for the possible effects (both direct and transitive) of
these threats over time. Therefore, the state estimation computation
consists of two phases. The first phase updates the state estimation

to account for the passage of time since the last state estimation,
while the second phase incorporate the newly arriving information,
either the diagnosis or the actuator result.

4. RELATED WORK AND CONCLUSIONS
Defense coordination has been addressed by Ultralog for several

years. Both Brinn and Greaves [1], and Helsinger et.al [4], have
described the overall Ultralog approach to survivability. The de-
scription in Helsinger et.al. used an earlier, more narrowly-scoped
version of the technology described in this paper. The basic ar-
chitecture and function of the Adaptive Defense Coordinator as it
exists today is described in [6]. An extended version of this paper,
covering both theoretic and implementation issues, will be pub-
lished in [3].

The goal of the work described in this paper is to provide a means
to accurately assess the state of an agent-based system, in terms of
the states of each of its components, and to use this to enhance
system survivability in the face of significant levels of failure and
uncertainty in its environment. Our approach usesPOMDPmodels
to estimate state in a large agent system. Though system-specific
constraints required adapting the model and making independence
assumptions, the existing theory for these models proved applica-
ble towards the survivability goal. To test our theories, we imple-
mented this approach within the agent system supporting the Ul-
tralog application. This implementation was tested successfully as
a part of the Ultralog survivability testing on a system of 1000+
agents.
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