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ABSTRACT
We present an approach to the verification of temporal epistemic
properties in synchronous multi-agent systems (MAS) via bounded
model checking (BMC). Based on the semantics of synchronous
interpreted system, we extend the temporal logicCTL∗ by in-
corporating epistemic modalities and obtain the so-called tempo-
ral epistemic logicCTL∗K. ThoughCTL∗K is of great expres-
sive power in both temporal and epistemic dimensions, we show
that BMC method is still applicable for the universal fragment of
CTL∗K. We present in some detail a BMC algorithm by using
the semantics of synchronous interpreted system. In our approach,
agents’ knowledge interpreted in synchronous semantics can be
skillfully attained by the state position function, which avoids ex-
tending the encoding of the states and the transition relation of the
plain temporal epistemic model for time domain.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence ]: DAI-Multiagent systems

General Terms
Theory, Verification

Keywords
Bounded model checking, temporal epistemic logic, bounded se-
mantics, translation to SAT

1. INTRODUCTION
Model checking is a popular technique for automatic formal ver-

ification of finite state systems. Recently, verification of MAS has
become an active field of research. In the multi-agent paradigm,
particular emphasis is given to the formal representation of the
mental attitudes of agents, such as agents’ knowledge, beliefs, de-
sires, intentions and so on. However, the formal specifications of
the traditional model checking are most commonly expressed as
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formula of temporal logics such asCTL and LTL. So, the re-
search of MAS verification has focused on the extension of tradi-
tional model checking to incorporate epistemic modalities for de-
scribing information and motivation attitudes of agents.

In order to overcome the state explosion problem of the BDD-
based symbolic model checking, we adoptbounded model checking
(BMC) in this paper. The basic idea of BMC is to explore a part of
the model sufficient to check a particular formula and translate the
existential model checking problem over the part of the model into
a test of propositional satisfiability.

The aim of this paper is to develop a BMC method for an expres-
sive logic, calledACTL∗K, which incorporates epistemic modal-
ities into ACTL∗ (the universal fragment ofCTL∗). The sig-
nificance ofACTL∗K is that the temporal expressive power of
ACTL∗K is greater than that ofACTLK [3]. For example, we
permit the subformula of an epistemic formula to be astateor path
formula, whileACTLK only subsumesstateformulas. It is con-
venient to useACTL∗K to specify and verify dynamic knowledge
of agents in dynamic environments.

2. LOGIC CTL∗K AND ITS SUBSETS
In this paper, we extend the temporal logicCTL∗ by incorpo-

rating epistemic operators, which includeK i (knows),DΓ (distrib-
uted knowledge),EΓ (everyone knows) andCΓ (common knowl-
edge), wherei ∈ A, Γ ⊆ A andA is a set of agents. To solve
the existential model checking problem, we add four dual epis-
temic operators related to the operators mentioned above. IfY ∈
{K i , DΓ , EΓ , CΓ } andϕ is a formula, thenY is the dual operator
of Y andY ϕ ≡ ¬Y ¬ϕ. We call the resulting logicCTL∗K.

Here we adopt thesynchronousinterpreted systems semantics
[1], which assumes that the agents have perfect recall or the agents
have access to a shared clock and run in synchrony. So each agent
always ”knows” the time. Formally, for all agentsi and all points
(r, n) and(r′, n′), if (r, n) ∼i (r′, n′), thenn = n′, where the
indistinguishability relation(r, n) ∼i (r′, n′) indicates that thei-
local stateri(n) is equal tor′i(n

′).
Then, the epistemic relations used byK i , DΓ , EΓ andCΓ are

defined as∼i,∼ D
Γ =

T
i∈Γ ∼i,∼ E

Γ =
S

i∈Γ ∼i, and∼ C
Γ = the

transitive closure of∼ E
Γ , respectively. We only define the synchro-

nous semantics of epistemic operators as follows:
(r, n) |= Y ϕ iff there is a runr′ and timen′ with (r, n)

Y∼ (r′, n′)
andn = n′ such that(r′, n′) |= ϕ,

where(Y,
Y∼) ∈ {(K i ,∼i), (DΓ ,∼ D

Γ ), (EΓ ,∼ E
Γ ), (CΓ ,∼ C

Γ )}.
TheECTL∗K logic is the restriction ofCTL∗K such that the

negation can be applied only to propositions. TheACTL∗K logic
is also the restriction ofCTL∗K such that its language is defined
as{¬ϕ|ϕ ∈ ECTL∗K}.
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3. BOUNDED SEMANTICS OF ECTL∗K

In this section we combine the bounded semantics forECTL∗

[2] with epistemic modalities so that the BMC problem forECTL∗K
can be translated into a propositional satisfiability problem.

Let M be a model andk a positive natural number. Ak-pathis a
path of lengthk, i.e.k-pathis a finite sequenceπk = {s0, . . . , sk}
of states such that(si, si+1) ∈ T (T is the transition relation of
M ) for all 0 ≤ i < k, andsi can be denoted byπk(i). A k-path
πk is called a(k,l)-loop if (πk(k), πk(l)) ∈ T for some0 ≤ l ≤ k.
To translate the existential model checking into the BMC and SAT
problem, we only consider a part of the modelM , calledk-model
(Mk), which consists of all thek-pathsof M .

A k-pathπk in Mk can be viewed as a part of arun r in M . So,
we can project a partialr into ak-pathπk. Let r(n) = πk(m) for
somen ≥ 0 and0 ≤ m ≤ k, and let timec ≥ n and0 ≤ l ≤ k.
We introduce a functionpos(n, m, k, l, c) :=

n
m + c− n, if c ≤ n + k −m;
l + (c− n− l + m)%(k − l + 1), else ifl ∈ loop(πk).

which returns the position of a state ofπk such that
πk(pos(n, m, k, l, c)) = r(c), i.e. the stateπk(pos(n, m, k, l, c))
of Mk represents the stater(c) of M , where% is modular arith-
metic andloop(πk) = {l|0 ≤ l ≤ k and(πk(k), πk(l)) ∈ T}.
Thus, we can use a(k, l)-loop of Mk to represent a part of anin-
finite run of M by the function. Further we definestate position
functionfI(k, l, c) := pos(0, 0, k, l, c) for epistemic operators.

Next, we define the bounded synchronous semantics ofECTL∗K,
which is a revision of [2], whereas time domain and epistemic op-
erators are added to it. Note that when checking a temporal formula
at the stateπk(m) and timec, let i be the position of the current
state under consideration andc′ the corresponding time of thei-th
state of thek-pathπk, thenc′ = c + i − m if i ≥ m, or else if
l ∈ loop(πk), thenc′ = c + k−m + 1 + i− l, which assures that
the timec′ always increases. For example, letα be anECTL∗K
formula, the bounded synchronous semantics for the temporal op-
eratorG (always) is defined as follows:

[(πk, l), m, c] |= G α ⇔8
><
>:

l 6∈ loop(πk) : false,
l ∈ loop(πk) andl ≥ m : ∀m≤i≤k [(πk, l), i, c + i−m] |= α,
l ∈ loop(πk) andl < m : ∀m≤i≤k [(πk, l), i, c + i−m] |= α

and∀l≤i<m [(πk, l), i, c + k −m + 1 + i− l] |= α.

As for epistemic conditions, we consider whether or not there
is a k-pathπk from the initial state that results in a states′ that
is indistinguishable to agenti from the considered global state and
the current clock at states′ is equal to the time under consideration.
The position of states′ can be obtained by the above method for
calculating state position. The bounded synchronous semantics for
epistemic operators are defined as follows:

[(πk, l), m, c] |= Yα ⇔ ∃π′k ∈ Pk such thatπ′k(0) = s0 and8
><
>:

if c ≤ k thenπk(m)
Y∼ π′k(c) and∃0≤l′≤k [(π′k, l′), c, c] |= α

else∃0≤l′≤k

�
l′ ∈ loop(π′k) andπk(m)

Y∼ π′k(fI(k, l′, c))
and[(π′k, l′), fI(k, l′, c), c] |= α

�
,

where(Y,
Y∼) ∈ {(K i ,∼i), (DΓ ,∼ D

Γ ), (EΓ ,∼ E
Γ )}.

[(πk, l), m, c] |= CΓ α ⇔ [(πk, l), m, c] |= W k
i=1(EΓ )iα.

4. BMC FOR ECTL∗K

In this section we present a BMC method forECTL∗K in syn-
chronous interpreted systems. It is an extension of the method pre-
sented in [2]. The main idea of the BMC method is that the validity
of anECTL∗K formulaϕ can be determined by checking the sat-
isfiability of a propositional formula[M, ϕ]k = [Mϕ,s0 ]k∧[ϕ]Mk ,
where[ϕ]Mk is a number of constraints that must be satisfied on

Mk for ϕ to be satisfied, and[Mϕ,s0 ]k represents the (partial)k-
modelMk under consideration, which consists of a part of valid
k-paths inMk. Definition 4.7 of [2] plus the following functions
determine the number of thosek-paths is sufficient for checking
formula ϕ, such that the validity ofϕ in Mk is equivalent to the
validity of ϕ in the part ofMk.
fk(CΓ α) = fk(α)+k, fk(Y α) = fk(α)+1, whereY ∈ {K i , DΓ , EΓ }.

Once[M, ϕ]k is constructed, the validity of formulaϕ overMk

can be determined by checking the satisfiability of the propositional
formula [M, ϕ]k via a SAT solver. Thus, the BMC problem for
ECTL∗K (M |=k ϕ) is translated into a propositional satisfia-
bility problem. We give the BMC algorithm forECTL∗K as fol-
lows: letϕ = ¬ψ if ψ is anACTL∗K formula. Then, start with
k := 1, test the satisfiability of[M, ϕ]k = [Mϕ,s0 ]k ∧ [ϕ]Mk via
a SAT solver, and increasek by one either until[M, ϕ]k becomes
satisfiable ork reaches|M | · |ϕ| · 2|ϕ|.

The translation for[Mϕ,s0 ]k is omitted here because it is simi-
lar to that of [2]. Now we give some details of the translations for
[ϕ]Mk , i.e. [ϕ]

[0,0,0]
k . Firstly, we introduce some propositional for-

mulas. Letw, v be two global state variables,s ands′ two states en-
coded byw andv respectively.Is(w) encodes states of the model
by global state variablew; H(w, v) represents the fact thatw, v
represent the same state;Hi(w, v) represents that thei-local state
in s ands′ is the same;Lk,j(l) := T (wk,j , wl,j) represents that
thej-th k-path is a(k, l)-loop. See [3] for more details.

Next, given ak-modelMk and anECTL∗K formula α. Let
Lk,i :=

W k
l′=0Lk,i(l

′) andx ∈ {k, (k, l)}. We use[α]
[m,n,c]
k to

denote the translation ofα at statewm,n and timec into a propo-
sitional formula based on the bounded semantics of a non-loop
k-path, whereas the translation of[α]

[m,n,c]
k,l depends on the bounded

semantics of a(k, l)-loop. The translation ofG α and epistemic
formulas are defined inductively as follows:[G α]

[m,n,c]
k := false,

[G α]
[m,n,c]
k,l := if l ≥ m then

V
k
i=m[α]

[i,n,c+i−m]
k,l

else
V

k
i=m[α]

[i,n,c+i−m]
k,l ∧Vm−1

i=l [α]
[i,n,c+k−m+1+i−l]
k,l ,

[Y α]
[m,n,c]
x :=8

>>>><
>>>>:

if c ≤ k then
W fk(ϕ)

i=1 (Is0 (w0,i) ∧ Z(Ha(wm,n, wc,i))

∧((¬Lk,i ∧ [α]
[c,i,c]
k ) ∨W k

l′=0
(Lk,i(l

′) ∧ [α]
[c,i,c]
k,l′ )))

else
W fk(ϕ)

i=1 (Is0 (w0,i) ∧
W

k
l′=0

(Lk,i(l
′)∧

Z(Ha(wm,n, wfI (k,l′,c),i)) ∧ [α]
[fI (k,l′,c),i,c]
k,l′ )),

where(Y, Z) ∈ {(Ka , ε), (DΓ ,
V

a∈Γ), (EΓ ,
W

a∈Γ)}
andε denotes thatZ is empty.

[CΓ α]
[m,n,c]
x := [

W
1≤i≤k(EΓ )i α]

[m,n,c]
x .

5. CONCLUSIONS
According to our BMC method, we are currently implementing

theACTL∗K bounded model checker (MCTK), which is an ex-
tension of theLTL BMC modules in NuSMV. We are keen to ex-
plore how sophisticatedly SAT solvers developed in constraint sat-
isfaction community can be used for BMC. In addition, we are also
interested in the extension of our approach to permit agents to have
perfect recall[1]. Furthermore, in order to overcome the intrinsic
limitation of BMC techniques, we will extend our BMC method to
unbounded model checkingfor the full CTL∗K language.
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