
A Software Tool for the Development of
MAS Communication Protocols based on Conversations

Madieyna Lamine Fall
Département de mathématiques et d’informatique

Université du Québec à Trois-Rivières
Québec, Canada, G9A 5H7

madieyna@hotmail.com

Sylvain Delisle
Département de mathématiques et d’informatique

Université du Québec à Trois-Rivières
Québec, Canada, G9A 5H7
(1) 819-376-5011, ext. 3832

Sylvain_Delisle@uqtr.ca

ABSTRACT
The work we present here is mainly concerned with interagent
communication, MAS communication protocols and, in
particular, software tools and environments to define, experiment
and evaluate actual protocols in MAS. We present a new MAS
tool/environment called ProtocolBuilder, implemented in Java,
which enables us to effectively support the development and
experimentation of MAS communication protocols based on
conversations (i.e. exchange of messages between agents).

Categories and Subject Descriptors
I.2.11 [Distributed Artificial Intelligence]: Intelligent agents and
Multiagent systems.

General Terms
Design, Experimentation, Languages, Verification.

Keywords
MAS, development environments, software tools, communication
protocols, conversations.

1. INTRODUCTION
We present a software tool for the development and
experimentation of interagent communication protocols in MAS
that not only makes it possible to create communication protocols,
but also to verify the compliance of actual conversations with the
protocols used in specific interagent conversations. The creation
of protocols is done in a flexible and generic way, which helps
reduce the difficulties involved in interagent communication
development via the design of an environment (software)
supporting the creation of communication protocols and
verification of interagent conversations. For the MAS developer,
this software environment facilitates a better comprehension of
MAS communication protocols by hiding (when needed) the
unnecessary details of messages and protocols, while being based
on principles supporting the analysis and testing of conversation-
based protocols.

2. RELATED WORK
The two MAS communication languages that can be considered
as de facto standards are KQML and FIPA-ACL. However,
agents developed in various environments using either KQML or
FIPA-ACL cannot easily communicate with each other. So to
establish a “standard” of communication, we must resolve several
remaining issues such as the sharing of ontologies, the limited
flexibility in communications protocols, and the absence of
standardization in object- and agent-oriented MAS development
tools. Thus, communication languages established in various
approaches often have inadequacies. First, the semantics of these
languages refers directly to the internal (private) state of an agent,
through mental concepts. Second, they do not make it possible in
practice to take part in conversations and must be used in
combination with other tools, such as finite state machines, which
specify the well-formedness of message sequences.

In recent years, we observe a clear trend towards the definition of
communication languages based on public concepts, such as
social engagements as well as on models of conversations more
flexible than protocols, such as dialogue games. Many research
works lead to the evaluation of different aspects to be taken into
account in the resolution of various MAS communication issues.
Representative of this trend are the contributions of [6]
(“commitment machines”), [5] (“architecture for argumentative
planning”), [2] (Albatross), [3] (“protocol of proposal”), [1] (“sets
of dialogues”), and [4] (“negotiation protocols and dialogue
games”). Various models have been proposed to represent
protocols, manage interagent conversations, and perform their
verification/validation. Among these, the basic ones are finite
state machines, Dooley graphs [8], and Petri nets [9].

3. THE ProtocolBuilder TOOL
Agents communicate by exchanging messages between
themselves. Each message is composed of several attributes, the
principal attribute being the speech act, which represents the
purpose of the message, followed by its parameters which
complete the message. To allow for standardization, each message
(sequence) should have a similar approach to the one proposed in
the messages of the de facto standard communication languages
FIPA or KQML.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee. AAMAS'05, July 2529,
2005, Utrecht, Netherlands. Copyright 2005 ACM 1-59593-094-
9/05/0007 ...$5.00.

The ProtocolBuilder tool allows the MAS developer to: 1) easily
create inter-agent communication protocols and provides basic
tools for the exploitation of interagent conversations; and 2)
verify protocols used in actual interagent conversations by
checking i) the conformity of conversations compared to the

1117

specified protocols (created through the ProtocolBuilder tool), ii)
the order of the different messages within the conversation, and
iii) the completeness of messages in conversations.

In order to test the various facets of the ProtocolBuider tool (i.e.
modeling, execution, verification, validation), we have used the
well-known Contract Net protocol example, often applied to
electronic trading. Using the Jack programming/development tool,
we carried out the simulation of the conversation between two
agents that adhere to (or, are supposed to) the Contract Net
protocol. Then, using the ProtocolBuilder environment, we
reproduced the Contract Net protocol, we adapted the interagent
conversations used in the Jack simulation, and we applied
ProtocolBuilder’s verification modes for different conversation
scenarios. Space limits prevent us from showing further details
here. However, all details are available in [7].

ProtocolBuilder has the following main characteristics:
• Ease of use through the specification of communications

protocols via graphical interfaces.
• Verification, via graphical interfaces, of the conformity of

conversations and the completeness of speech acts
parameters used within conversations relative to the followed
communication protocol specifications.

• The ProtocolBuilder environment is composed of “libraries”.
These libraries increase dynamically as we create protocols,
speech acts, and parameters. They are very useful to create
other protocols, or to check whether protocols are enforced
(or violated) during actual conversations.

• The ProtocolBuilder environment was entirely implemented
with the Java object-oriented programming language.

• ProtocolBuilder can be used with several tools (AgentTool,
Jackal, Jive, AFMAS, Zeus, etc.) [10], in order to simulate
and evaluate interagent conversations.

4. CONCLUSION AND FUTURE WORK
Our tool does not allow the management of complex
conversations based on simultaneous exchanges between agents.
There are several possible ways to advance our work:
• The modeling of protocols within the ProtocolBuilder

environment was carried out through finite state machine
structures. Consequently, the creation of a protocol with
ProtocolBuilder can only be done serially (i.e. concurrent
actions are not handled). We could consider the modeling of
protocols with Petri nets, thus allowing for the handling of
certain concurrency aspects during protocol creation. We
could then consider the execution of several concurrent
actions, and then verify the compliance of such complex
conversations to their associated protocols.

• A limitation of the current state of the art in MAS is that we
know little about the semantics of the conversations and the
relations between the speech acts and the conversations of
which they form a part. One should be able to capture the
semantic contents of the actions in protocols.

Dialogues can take several forms: persuasion, negotiation,
deliberation, search of information, etc. Moreover, in a
conversation, dialogues can change forms. A way to go forward
would be to consider the creation of more elaborated protocols

built from several sub-protocols. In principle, this would not only
make it possible to gain a greater abstraction of protocols, but also
a reduction in complexity in the verification and validation of
conversations based on this concept of dialectical shifts [11].

5. REFERENCES
[1] Chaib-draa, B., Labrie, M.-A., and Maudet, N. (2003),

“Request for Action Reconsidered as a Dialogue Game
Based on Commitments”. Communication in Multiagent
Systems, Lecture Notes in Artificial Intelligence #2650, 284-
299. Springer.

[2] Colombetti, M. (2000), “A Commitment-based Approach to
Agent Speech Acts and Conversations”. Proceedings of the
Workshop on Agent Languages and Communication Policies,
4th International Conference on Autonomous Agents, 21-29,
Barcelona.

[3] Flores. R.A. and Kremer. R.C. (2004), “A Principled
Modular Approach to Construct Flexible Conversation
Protocols”. 17th Canadian AI Conference, London, Canada.

[4] Dastani, M., Hulstijn, J., and der Torre, L. V. (2001),
“Negotiation Protocols and Dialogue Games”. Proceedings
of the Fifth International Conference on Autonomous Agents,
180-181, Montreal, Canada. ACM Press.

[5] Reed, C., Long, D. and Fox, M. (1996), “An Architecture for
Argumentative Discourse Planning”, Proceedings of The 1st
International Conference on Formal and Applied Reasoning
(FAPR'96), Lecture Notes in AI #1085. Springer.

[6] Singh, M. P. and Yolum, P. (2001), “Commitment
Machines”. Proceedings of the 8th International Workshop
on Agent Theories, Architectures, and Languages (ATAL-
2001), 245-257.

[7] Fall, M. L. (2004): “ProtocolBuilder : Outil logiciel de
développement et d'expérimentation de protocoles de
communication pour les systèmes multiagents”, mémoire de
maîtrise, Département de mathématiques et d'informatique,
UQTR. (available via www.uqtr.ca/~delisle)

[8] Parunak. H. V. D. (1996), “Visualizing Agent Conversations:
Using Enhanced Dooley Graphs for Agent Design and
Analysis”. Proc. 2nd Intl. Conference on Multiagent
Systems, 275-282.

[9] Finin T., Cost R. S., Chen Y., Labrou Y., and Peng Y.
(2000), “Using Colored Petri Nets for Conversation
Modeling”. Issues in Agent Communication, Lecture Notes
in Artificial Intelligence #1916, 178–192. Springer.

[10] www.multiagent.com/Software/Tools_for_building_MASs/

[11] Walton, D.N. (1992), “Types of Dialogue, Dialectical Shifts
and Fallacies”. In F.H. van Eemeren, R. Grootendorst, J.A.
Blair and Ch.A. Willard (eds. 1992) Argumentation
illuminated. Amsterdam: SICSAT/ISSA, 133-147.

6. ACKNOWLEDGMENTS
We thank the National Sciences and Engineering Research
Council of Canada (NSERC) for its financial support.

1118

