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Sébastien Paquet, Ludovic Tobin and Brahim Chaib-draa
DAMAS Laboratory

Department of Computer Science and Software Engineering
Laval University, Canada

{spaquet;tobin;chaib}@damas.ift.ulaval.ca

ABSTRACT
In this paper, we present an online method for POMDPs,
called RTBSS (Real-Time Belief Space Search), which is
based on a look-ahead search to find the best action to
execute at each cycle in an environment. We thus avoid
the overwhelming complexity of computing a policy for each
possible situation. By doing so, we show that this method is
particularly efficient for large real-time environments where
offline approaches are not applicable because of their com-
plexity. We first describe the formalism of our online method,
followed by some results on standard POMDPs. Then, we
present an adaptation of our method for a complex multia-
gent environment and results showing its efficiency in such
environments.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; I.2.11 [Artificial Intelligence]: Dis-
tributed Artificial Intelligence—Multiagent systems

General Terms
Algorithms, Experimentation

Keywords
POMDP, Online Search

1. INTRODUCTION
When faced with partially observable environments, a gen-

eral model for sequential decision problems is to use the Par-
tially Observable Markov Decision Processes (POMDPs). A
lot of problems can be modelled with POMDPs, but very
few can be solved because of their computational complexity
(POMDPs are PSPACE-complete [16]). The main problem
with POMDPs is that their complexity makes them applica-
ble only on small environments. However, most problems of
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interest have a huge state space, which motivates the search
for approximation methods [9]. This is especially the case
for multiagent systems where we often have a huge state
space with autonomous agents interacting with each other.

POMDPs have generated a lot of interest in the AI com-
munity and many approximation algorithms have been de-
veloped recently [5, 17, 18, 19, 21]. They all share in com-
mon the fact that they solve the problem offline. While
these algorithms can achieve very good performances, they
are not applicable on large multiagent problems.

In this paper, instead of computing a complete policy of-
fline, we present an online approach based on a look-ahead
search in the belief state space to find the best action to
execute at each cycle in the environment. Our algorithm,
called RTBSS (Real-Time Belief Space Search), only ex-
plores reachable belief states starting from the agent’s cur-
rent belief state [14]. This online exploration has to be
as fast as possible, since our algorithm has to work under
some real-time constraints. To achieve that, we opted for a
factored POMDP representation and a branch and bound
strategy. By pruning some branches of the search tree, the
algorithm is able to search deeper, while still respecting the
real-time constraint.

By doing an online search, we avoid the overwhelming
complexity of computing a policy for every possible situa-
tion the agent could encounter. Since there is no computa-
tion offline, the algorithm is immediately applicable to pre-
viously unseen environments, if the environments’ dynamics
are known. Other approaches have used an online search for
POMDPs, but they were not immediately efficient without
any offline computations. For example, the BI-POMDP al-
gorithm needs the underlying MDP to be solved offline to
choose in which order to expand the search [22]. Similarly,
the BEL-RTDP algorithm [6] needs successive trials in the
environment in addition to the solution for the underlyn-
ing MDP, thus it needs an offline training before becoming
efficient.

In the second part of this paper, the basic RTBSS al-
gorithm has been slightly modified to take the specificity
of multiagent systems into consideration for the transition
model and the maintenance of the belief state. The main
idea is to abstract some of the dynamic parts of the envi-
ronment in order to respect the real-time constraint.

In this article, we first describe the formalism of our online
algorithm, followed by some results on standard POMDPs,
then we present an adaptation of our method for a com-
plex multiagent environment and some results showing its
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efficiency in such environments. The results show that it is
possible to achieve relatively good performances by using a
very short amount of time online. The tradeoff between the
solution quality and the computing time is very interesting.

2. MOTIVATIONS
The development of our algorithm is in fact constrained

by the following constraints:

• the algorithm has to be efficient in large state spaces;

• the environment is partially observable;

• an agent using this algorithm has to be efficient in
previously unknown instances of an environment;

• the agent’s response time has to respect a real-time
constraint.

An example of problems with those constraints is an au-
tonomous robot that evolves in unknown environments and
where it has to decide which action to pursue in a timely
manner even if it is the first time it sees the environment.
Another example is the RoboCupRescue simulation [12] in
which agents have to be immediately efficient in previously
unseen cities. In this environment, agents have to act fast
to stop the degradation of the rescue situation.

In such environments, a POMDP algorithm should guar-
antee a fast agent response time (for example, under 500ms).
Moreover, an agent should be immediately efficient in any
configuration of the modeled environment. This last con-
straint eliminates all offline approaches, because the agent
does not have time to learn a complete policy before its ex-
ecution. It is not realistic to let an offline algorithm take 2
days, for example, to compute a complete policy each time
their is a little modification in the environment, because the
situation can get worst rapidly. Those constraints motivated
us to develop our online POMDP algorithm that can ensure
a quick response time in a huge state space.

3. POMDP
In this section we describe POMDPs and then we intro-

duce factored POMDPs. For a more detailed presentation
of POMDPs, we refer the reader to [1, 10]. Formally, a
POMDP is a tuple described as 〈S ,A,T ,R, Ω,O〉 where:

• S is the set of all the environment states;

• A is the set of all possible actions;

• T (s, a, s ′) is the probability of ending in state s ′ if the
agent performs action a in state s;

• R(s) is the reward associated with being in state s.

• Ω is the set of all possible observations;

• O(s ′, a, o) is the probability of observing o if action a
is performed and the resulting state is s ′.

Since the environment is partially observable, an agent
cannot perfectly distinguish in which state it is. To manage
this uncertainty, an agent can maintain a belief state b which
is defined as a probability distribution over S . b(s) means
the probability of being in state s according to belief state b.
We will use B to denote the set of all possible belief states
which is infinite and uncountable.

The agent also needs to choose an action to do in function
of its current belief state. This action is determined by the
policy π : B → A, which is a function that maps a belief
state to the action the agent should execute in this belief
state. The optimal policy can be computed offline using well
known algorithms such as the enumeration algorithm [20]
or Witness [13]. Some interesting approximation algorithms
like PBVI [17] and HSVI [19] allows finding an approximate
solution much faster than optimal algorithms.

Formally, the value function of a belief state for an horizon
of t is given by:

Vt(b) = R(b) + γ max
a

X

o∈Ω

P(o |b, a)Vt−1(τ(b, a, o)) (1)

R(b) =
X

s∈S

b(s)R(s) (2)

R(b) is the expected reward for the belief state b. The
second part of equation 1 is the discounted expected future
rewards. P(o |b, a) is the probability of observing o if action
a is performed in belief state b.

P(o |b, a) =
X

s′∈S

O(s ′, a, o)
X

s∈S

T (s, a, s ′)b(s) (3)

Also, τ(b, a, o) is the belief state update function. It re-
turns the resulting belief state if action a is done in belief
state b and observation o is perceived. If b′ = τ(b, a, o),
then:

b′(s ′) = ηO(s ′, a, o)
X

s∈S

T (s, a, s ′)b(s) (4)

where η is a normalizing constant. Finally, the policy can
be obtained according to:

πt(b) = argmax
a

"

R(b) + γ
X

o∈Ω

P(o |b, a)Vt−1(τ(b, a, o))

#

(5)

3.1 Factored POMDP
The traditional POMDP model is not necessarily suited

for large environments because it requires enumerating ex-
plicitly all the states. However, most environments can be
described as a set of different features which allows repre-
senting the states much more compactly. The states can
then be defined with a set of random variables. Let X =
{X1, . . . ,XM } be the set of M random variables that fully
describe a state. Then Di = domXi is the set of all pos-
sible values for the random variable Xi . We suppose that
each variable has a finite number of possible values. There-
fore, a state is defined by assigning a value to each variable:
s = {X1 = x1, . . . ,XM = xM } where xi ∈ Di . We also use a
more compact representation s = {xi}

M
i=1.

Moreover, we need to slightly modify the belief state defi-
nition according to the factored representation of states. We
define b as a full joint probability distribution on all random
variables: b = P(X1, . . . ,XM ). In our approach, we consider
that all the variables are independent; this is why we can
reformulate the belief state as: b = P(X1) · · ·P(XM ). It
follows that the probability of being in a state can easily be
computed by doing the product of the variables’ probabili-
ties.

Of course, this is a very strong hypothesis. However, even
if some variables are dependent, it is still possible to factorize
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Figure 1: An example of a belief state.

the belief state with minimal degradation of the quality of
the solution. In this case, we would have to regroup the
variables in dependant subsets. To do so, there are some
methods that could be used to find the best factorization [4,
18], but we do not go further in this article.

To illustrate how the factorization works, let’s suppose an
environment that can be described by 3 variables X1,X2 et
X3. Each of these variables can respectively take 5, 6 and
4 different values; the environment then has 120 states. A
possible belief state b is shown in Figure 1. Each vector
represents the probability for each value of each variable.

By maintaining the probabilities on variables instead of
states, it is much easier to update the belief state and it can
be used for approximation methods. In the next section, we
describe the benefits of a factored representation to avoid
having sums defined on all states for the equations 1 to 3.
This allows greatly improving the computation speed.

3.2 Using the Factored Representation
Firstly, to take advantage of the factored representation,

we define a function ω : B → P S :

ω(b) = {{xi}
M
i=1 | (∀ xi) Pb(Xi = xi) > 0} (6)

This function returns all the states the agent could be in,
according to a belief state. We know that a state is impossi-
ble if one of the variables has a probability of zero according
to b. If the variables are ordered approximately according
to their certainty, this subset of states can be constructed
quite rapidly because each time we encounter a variable with
a zero probability, we can immediately exclude all the cor-
responding states. The following equation can then be com-
puted much more rapidly than equation 2:

R(b) =
X

s∈ω(b)

R(s)b(s) (7)

The only difference in this equation is that the summa-
tion is defined on a subset of states (ω(b)) instead of the
whole state space. The less uncertainty the agent has, the
smaller is the subset of possible states and the faster is the
computation of equation 7 compared to equation 2.

For example, suppose the agent wants to know the reward
of being in the belief state illustrated in Figure 1. With
the traditional approach, we would have to iterate on all
120 states. However, when we observe the belief state, we
immediately see that many states are impossible. With our
approach, we only have to iterate on 20 states.

Now that we consider only possible states, we would also
like to have a function that returns the states that are reach-
able from a certain belief state. For this, we define a new
function α : A × B × Ω → P S that takes as parameters
the current belief state b, the action performed a and the
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Figure 2: A search tree.

observation perceived o, and returns all reachable states.

α(a, b, o) = {s ′ | (∀ s ∈ ω(b)) T (s, a, s ′) 6= 0

∧ O(s ′, a, o) 6= 0} (8)

The probability of making an observation can also be ex-
pressed using α and ω:

P(o |a, b) =
X

s′∈α(a,b,o)

O(s ′, a, o)
X

s∈ω(b)

T (s, a, s ′)b(s) (9)

The belief state update function τ(b, a, o) can also be
computed more efficiently with a factored representation,
we refer the reader to [4, 18] for more details.

4. ONLINE DECISION MAKING
As we mentioned above, the different algorithms that use

dynamic programming to solve the problem offline can only
be applied on small problems. Even state of the art ap-
proximation algorithms can at best be applied on medium
sized problems. Instead of computing a policy offline, we
adopted an online approach where the agent only explores
belief states that can be reached from the current belief
state. This allows avoiding searching for a complete pol-
icy, thus avoiding a lot of computations. The advantage of
such a method is that it can be applied on very large prob-
lems. It also allows having a model for decision making in
large stochastic environments. In this section, we explain in
detail how the algorithm for online decision-making works.

4.1 Belief State Value Approximation
In section 3, we described how it was possible to exactly

compute the value of a belief state using dynamic program-
ming (equation 1). In this section, we instead explain how
we estimate the value of a belief state for our online ap-
proach by using a look-ahead search. The main idea is to
construct a tree where the nodes are belief states and where
the branches are a combination of actions and observations
(see Figure 2). To do so, we have defined a new function
that takes as parameters a belief state b and a depth d
and returns an estimation of the value of b by performing
a search of depth d . For the first call, d is initialized at D ,
the maximum depth allowed for the search.

δ(b, d) =

8
><

>:

U (b) , if d = 0
R(b) + γmax

a

P

o∈Ω

(P(o | b, a)

×δ(τ(b, a, o), d − 1)) , if d > 0

(10)

where R(b) is computed using equation 7 and P(o | b, a)
using equation 9.
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1: Function RTBSS(b, d , rAcc)

Inputs: b: The current belief state.
d : The current depth.
rAcc: Accumulated rewards.

Statics: D : The maximal depth search.
bestValue: The best value found in the search.
action: The best action.

2: if d = 0 then
3: finalValue ← rAcc + γD × U (b)
4: if finalValue > bestValue then
5: bestValue ← finalValue

6: end if
7: return finalValue

8: end if
9: rAcc ← rAcc + γD−d × R(b)
10: if Prune(b, rAcc, d) then
11: return −∞
12: end if
13: actionList ← Sort(b, A)
14: max ← −∞
15: for all a ∈ actionList do
16: expReward ← 0
17: for all o ∈ Ω do
18: b

′ ← τ(b, a, o)
19: expReward ← expReward + γD−d × P(o |a, b)×

RTBSS(b′, d − 1, rAcc)
20: end for
21: if (d = D ∧ expReward > max) then
22: max ← expReward

23: action ← a

24: end if
25: end for
26: return max

Algorithm 1: The RTBSS algorithm.

When d = 0, we are at the bottom of the search tree.
In this situation, the value of this belief state is given by a
utility function U (b). This function gives an idea of the real
value of this belief state (if the function U (b) was perfect,
their would be no need for a search). This utility function
has to be defined for each problem.

When d > 0, the value of a belief state at a depth of D−d
is simply the immediate reward for being in this belief state
added to the maximum discounted reward of the subtrees
underneath this belief state.

Finally, the action to perform in a certain belief state is
given by:

π(b,D) = argmax
a

X

o∈Ω

P(o | b, a)δ(τ(b, a, o),D − 1) (11)

4.2 RTBSS Algorithm
We have elaborated an algorithm, called RTBSS (Real-

Time Belief State Search), that is used to construct the
search tree and to find the best action (see Algorithm 1).
Its name is due to the fact that it does a search in the be-
lief state space online while satisfying a real-time constraint.
Since it is an online algorithm, it must be applied each time
the agent has to make a decision.

To speed up the search, our algorithm uses a ”Branch
and Bound” strategy to cut some sub-trees. The algorithm
first explores a path in the tree up to the desired depth D
and then computes the value for this path. This value then
becomes a lower bound on the maximal expected value.

Afterwards, for each node of the tree visited, the algo-
rithm can evaluate with an heuristic function if it is possi-
ble to improve the lower bound by pursuing the search to
a depth of D . This is represented by the Prune function

at line 10. The heuristic function returns an estimation of
the best utility value that could be found if the search was
pursued. Thus, if according to the heuristic, it is impossible
to find a value that is better than the lower bound by con-
tinuing the search to a depth of D , the algorithm backtracks
and explores another action. If not, the search continues be-
cause there is a non-zero probability that the best solution
is hiding somewhere in the sub-tree.

Moreover, the heuristic function used in the Prune func-
tion must be defined for each problem. Note that such
heuristic should overestimate the true value in order to guar-
antee that all the pruned sub-trees do not contain the best
solution.

To link the algorithm with the equations presented, notice
that the line 19 of Algorithm 1 corresponds to the last part
of equation 10, where δ is replaced by RTBSS. Also, the
function τ(b, a, o) at line 18 returns the new belief state if
o is perceived after the agent has done action a in belief
state b. Note that the Sort function at line 13 sorts the
actions to try the actions that are the most promising first
because it generates more pruning early in the search tree.

With RTBSS the agent finds at each turn the action that
has the maximal expected value up to a certain horizon of
D . As a matter of fact, the performance of the algorithm
strongly depends on the depth of the search. The complexity
of the search is in the worst case of: O((| A | × | Ω |)D).
In this case, no pruning is done, consequently with a good
heuristic, it is possible to do much better.

Therefore, our algorithm is efficient if the number of ac-
tions and observations is kept small. Otherwise, the search
cannot be done deep enough since the branching factor be-
comes too big. If there are many observations, it is possible
to use a sampling of the observations in order to explore
only the most probable observations [14]. However, for this
paper, we only considered exploring all the observations.

5. EXPERIMENTS: STANDARD POMDPS
In this section we present the results we have obtained on

two problems: Tag [17] and RockSample [19]. If we com-
pare RTBSS with different existing approaches (see Table
1), we see that our algorithm can be executed much faster
than all the other approaches. RTBSS does not require any
time offline and takes only a few tenths of a second at each
turn. On small problems the performance is not as good as
the best algorithms but the difference is not too important,
depending on the problem.

We also note that our algorithm is faster than the popular
approximation method QMDP and achieves a better result.
QMDP consists in solving the underlying MDP as if it was
totally observable.

Moreover, the most interesting results are obtained when
the problem becomes bigger. If we look at the RockSample
problems, RTBSS is really close on the first three smaller
problems, but it is much better on the biggest problem.
RTBSS is better because HSVI has not had time to converge
in the allowed time. This shows an important advantage of
our approach on big environments.

However, the Tag and RockSample problems do not to-
tally do justice to our algorithm because we can affirm that
it is better to apply an offline algorithm in order to have
a better solution, even if we need to wait a few hours or
days before having the solution. However, each time the
environment slightly changes, we have to wait another few
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Problem Reward
Offline
Time(s)

Online
Time(s)

Tag (870s,5a,30o)
QMDP -16.75 11.8 -
RTBSS -10.56 0 0.231

PBVI [17] -9.18 180880 -
BBSLS [5] ∽ -8.3 ∽100000 -
BPI [18] -6.65 250 -
HSVI [19] -6.37 10113 -
Perséus [21] -6.17 1670 -
RockSample[4,4] (257s,9a,2o)
RTBSS 16.2 0 0.11

PBVI [19]2 17.1 ∼ 2000 -
HSVI [19] 18.0 577 -
RockSample[5,5] (801s,10a,2o)
RTBSS 18.7 0 0.11

HSVI [19] 19.0 10208 -
RockSample[5,7] (3201s,12a,2o)
RTBSS 22.6 0 0.11

HSVI [19] 23.1 10263 -
RockSample[7,8] (12545s,13a,2o)
RTBSS 20.1 0 0.21

HSVI [19] 15.1 10266 -

Table 1: Comparison of our approach. The reward
for RTBSS is the average reward over 1000 simula-
tions.

hours or days. Thus, if the environment is not exactly the
same from one execution to another, the offline approaches
become really expensive. We have used those two environ-
ments because they were popular and because they enabled
us to compare the RTBSS’s performances with the best of-
fline performances. Our results show that even if they have
all the time they want, offline approaches have some diffi-
culties to catch up with the performances obtained by our
RTBSS algorithm on big environments.

Another huge advantage of our algorithm is its adaptabil-
ity to environment changes. Let’s suppose that we have the
RockSample problem but at each new execution in the en-
vironment, the initial position of the rocks changes or the
shape of the grid changes. With offline algorithms, it would
require recomputing a new policy for the new configuration
while our algorithm could be applied right away. There-
fore, our RTBSS algorithm is more suited to environments
in which the initial configurations can change and when the
agent has to be deployed rapidly. For instance, in rescue op-
erations, agents have to be deployed immediately, they do
not have the time to learn a good policy.

6. EXPERIMENTS: ROBOCUPRESCUE
In this section, we present results in a mush more com-

plete environment: the RoboCupRescue simulation. This
environment consists of a simulation of an earthquake hap-
pening in a city [12]. The goal of the agents (representing
firefighters, policemen and ambulance teams) is to minimize
the damages caused by a big earthquake, such as civilians
buried, buildings on fire and roads blocked. In this dynamic
environment, there are a lot of uncertainties that complicate
the work of the agents.

1It corresponds to the average time taken by the algorithm
at each time it is called to find an action.
2PBVI was presented in [17], but the result on RockSample
was published in [19].

For this article, we consider only the policeman agents.
Their task is to clear the most important roads as fast as
possible, which is crucial to allow the other rescuing agents
to perform their tasks. However, it is not easy to determine
how the policemen should move in the city because they do
not have a lot of information. They have to decide which
road to prioritize and they have to coordinate themselves so
that they do not try to clear the same road.

In this section, we present how we applied our approach in
the RoboCupRescue simulation. In fact, we are interested
in only a subproblem which can be formulated as: Having
a partial knowledge of the roads that are blocked or not,
the buildings in fire and the position of other agents, which
sequence of actions should a policeman agent perform?

6.1 RoboCupRescue viewed as a POMDP
We present how we modelled the RoboCupRescue as a

POMDP, from the point of view of a policeman agent. The
different actions an agent can do are: North, South, East,
West and Clear. A state can be described by approximately
1500 random variables, depending on the simulation:

• Roads: There are approximately 800 roads in a simu-
lation and they can either be blocked or cleared.

• Buildings: There are approximately 700 buildings in a
simulation and they can either be on fire or not.

• Agents position: An agent can be on any of the 800
roads and there’s usually 30-40 agents.

If we estimate the number of states, we obtain 2800×2700×
80030 states. However, a strong majority of them are not
possible and will not ever be reached. The state space of
RoboCupRescue is too important to even consider apply-
ing offline algorithms. We must therefore adopt an online
method that allows finding a good solution very quickly.

6.2 Application of RTBSS on RoboCupRescue
This section presents how we have applied RTBSS to this

complex environment. In RoboCupRescue, the online search
in the belief state space represents a search in the possible
paths that an agent can take. In the tree, the probability
to go from one belief state to another depends on the prob-
ability that the road used is blocked. One specificity of this
problem is that we have to return a path to the simulator,
thus the RTBSS algorithm has been modified to return the
best branch of the tree instead of only the first action.

Furthermore, the key aspect of our approach is that we
consider many variables of the environment to be static dur-
ing the search in order to minimize the number of states
considered. For example, suppose the agent has to evaluate
a belief state. If we consider the general problem, the agent
would have to iterate over a lot of states, because many
states are possible, thus the set returned by the equation 6
would still be very big.

Our idea is to reduce this subset of states even more.
To do so, the agent considers that some parts of the en-
vironment are static during its search in the tree. In the
RoboCupRescue, all variables are considered static except
the position of the agent and the variables about the roads.
For the other variables, like the position of the other agents
and the position of the fires, the agent considers that they
keep the last value observed. Consequently, all those fixed
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variables are represented in the belief state by a vector con-
taining only zeros except for the last value observed which
has a probability of one. Therefore, the function ω (equa-
tion 6) only returns a small subset of states.

More precisely, the beliefs are only maintained for the
road variables. Those variables are the most important for
the agent decisions. In other words, the agent focuses on the
more important variables, maintaining beliefs as precisely as
possible, and it abstracts the other variables by considering
that they are fixed and it relies only on its observations to
maintain them.

The fixed variables are not ignored, they are considered
during the search, but we are not trying to update them.
For example, if a firefighter agent is considered to be on
road r3, it will stay there during the whole search. We know
that in practice it moves, but to simplify the search, we
consider that it stays at the same position. We update the
value of the fixed variables only when the agent perceives a
new value. In our model, we consider the observations to
be both the direct agent’s observations and the information
received by messages. We are in a cooperative multiagent
system, therefore all agents have complete confidence in the
information received from the other agents.

In the RoboCupRescue, we could have tried to estimate
the position of all other agents by considering their position,
their tasks and their speed, but since they are all indepen-
dent agents, the estimated probability would have been re-
ally approximate. Moreover, the computation time to main-
tain good approximations would have been too important.
Consequently, the price to pay is too important compared
to the gain we could have made.

In complex dynamic multiagent environments, it is often
better to rely on observations than to try to predict ev-
erything. There are just too many things moving in the
simulation. Therefore, the agent should focus on the more
important parts of the environment. To efficiently take all
the unpredicted parts of the environment into consideration,
the agent can shorten its loop of observation and action to
keep its belief state up-to-date. This can be done because
our RTBSS algorithm can find an action very quickly. Con-
sequently, the agent makes frequent observations, thus it
does not need a model for the less important parts of the
world, because they do not have time to move a lot between
observations.

6.3 Dynamic Reward Function
Moreover, we have defined a dynamic reward function that

gives a reward for clearing a road that depends on the po-
sition of the fires and the other agents. This enables the
agent to efficiently compute its estimated rewards based on
its current belief state without having to explicitly store all
rewards for all possible states.

A policeman agent needs to assign a reward to each road
in the city, which are represented as nodes in a graph (see
Figure 3). The reward values change in time based on the
position of the agents and the fires, therefore the agent needs
to recalculate them at each turn. To calculate the reward
values, the agent propagates rewards over the graph, start-
ing from the rewarding roads, which are the position of the
agents and the fires. For example, if a firefighter agent is on
road r1 then this road would receive a reward of 5, the roads
adjacent to r1 in the graph would receive a reward of 4, the
roads adjacent to the roads adjacent to r1 would receive 3,
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Figure 3: Reward function’s graph.

and so on. Also, we add rewards for all roads in a certain
perimeter around a fire.

What is interesting with this reward function is that it
can be used to coordinate the policeman agents. The coor-
dination is necessary, because we do not want all agents to
go to the same road. Therefore, we have to maintain some
degree of dispersion among the policeman agents. To do
so, the agent propagates negative rewards around the other
policeman agents. In other words, the policeman agents
repulse each other. With this simple modification of the
reward function, we were able to disperse efficiently, thus
dynamically coordinate up to fifteen agents acting in a re-
ally dynamic environment.

Figure 3 shows an example of a reward graph. The nodes
represent the roads and the reward source is identified in
each node. The big number over a node is the total reward,
which is the sum of all rewards identified in the node. As
we can see, roads around the firefighter agent receive posi-
tive reward, while roads around the policeman agent receive
negative rewards. Therefore, the agent would want to go to
roads near the fire and not necessarily go to the firefighter
because there is already a policeman agent near it. Conse-
quently, agents are coordinating themselves simply by prop-
agating negative rewards. This is a nice way to coordinate
agents in an online multiagent POMDP.

6.4 Results and Discussion
In such a huge problem as RoboCupRescue, it was im-

possible to compare our approach with other POMDP algo-
rithms. Therefore, we compared our algorithm RTBSS with
an heuristic method for the policeman agents.

To demonstrate the efficiency of RTBSS, we have com-
pared it with our last approach for the policemen, which
was an intuitive approach in which agents cleared roads ac-
cording to some priorities. Each agent received a sector for
which it was responsible at the beginning of the simulation.
Agents cleared roads in this order: roads asked by the other
agents, roads around refuges and fires and finally, all the
roads in their sector.

The results that we have obtained on 7 different maps are
presented in Figure 4. By using the approach we presented
in this paper, it improved the average score by 11 points.
This difference is very important because in competitions, a
few tenths of a point can make a big difference. For example,
at the 2004 international competition, our DAMAS-Rescue
team missed the first place by 0.4 points. Furthermore, on
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Figure 4: Scores obtained on seven different simu-
lations.
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Figure 5: Number of agents blocked.

the graph we show a 95% confidence interval that suggest
that our algorithm allows more stable performances.

Figure 5 shows a comparison of the number of agents that
are blocked at each cycle. As we mentioned above, one of
the goals of the policeman agents is to clear the roads so
that other agents can navigate freely in the city. The fewer
agents that are blocked, the better the performances are.
The results show that our method allows prioritizing the
most important roads since on average, there are one or two
fewer blocked agents. This means that those agents save
civilians instead of waiting for policeman agents. Further-
more, Figure 6 shows the number of roads that are blocked
at each cycle in the simulation. We see that RTBSS allows
the policeman agents to clear the roads faster. Briefly, with
RTBSS agents clear the most important roads faster than
with the heuristic approach.

7. RELATED WORK
We compared our approach with 5 others used to find an

approximate solution (see Table 1). These approaches are
very interesting because they achieve good solution qual-
ity. However, those approaches are still limited to relatively
small environments because they all proceed offline which
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Figure 6: Number of blocked roads.

requires a lot of computation time on big problems.
Other researchers have worked on online approaches. For

example, [14] have also used an online exploration of the be-
lief state space, but they were not using any pruning tech-
niques in order to accelerate the algorithm. In addition, [22]
developed the BI-POMDP algorithm which expands a tree
similar to us, but with a AO* approach to which he adds
bounds calculation to choose the order in which the nodes
have to be expanded. For his bounds, the underlying MDP
has to be solved offline, which is not admissible for us, as
stated in the Motivations section. [11] have used an ex-
ploration of trajectories in a tree structure to test different
policies. Their objective is to choose a policy in a class of
policies using a simulator of the POMDP. In our case, we
do not consider the availability of a simulator to test differ-
ent policies. We instead consider that the agent is working
directly in the environment.

Another online algorithm is BEL-RTDP which learns some
heuristics values for the belief states visited by successive
trials in the environment [6]. The main differences of this
approach is that it does not search in the belief state tree
and it needs offline time to calculate the starting heuristic
based on the QMDP approach. Also, since it learns heuristic
values for each belief states visited, it needs to discretize the
belief state space to have a finite number of belief states.

Other methods use an heuristic search to solve POMDPs,
but in their case, the search is performed in the space of the
policies, represented as finite state machines [7, 15]. Thus,
they also try to build a policy offline which differs from
our approach. Another offline algorithm that uses search
to solve MDPs is LAO*, which returns a complete policy
represented as a cyclic graph [8].

It is also possible to draw similarities with the work in
the probabilistic planning domain [2, 3]. In planning a look-
ahead search is often used to explore the belief space until a
goal is found. However, in POMDPs the agent is not neces-
sarily looking for a goal but it is rather trying to maximize
its expected rewards. In addition, classical planning does
not take into account the execution. With POMDPs, after
each executed action, the agent perceives a new observation
that influences its future. The plan, or policy, produced
then needs to take into consideration all possible observa-
tions which is not the case in planning.
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8. CONCLUSION AND FUTURE WORK
In this paper, we have described an approach that can be

used online to act quickly in POMDPs with a huge state
space. The main advantage of our method is that it can
be applied to problems where offline algorithms would take
too much time. The main idea consists of using an online
approach in order to avoid computing a full policy offline.

We showed results on two standard POMDP problems.
On the smaller problems, RTBSS is not far from the other
algorithms, but it is much faster. On the largest problem,
RTBSS becomes better because the offline algorithm was
not able to converge. This shows a great advantage of our
algorithm on larger problems. The larger the environment
is, the better RTBSS is compared to offline approaches.

We have also applied our algorithm in a complex mul-
tiagent environment, the RoboCupRescue simulation. We
showed how we have slightly modified our basic RTBSS al-
gorithm to take the specificity of multiagent systems more
into consideration. In addition, we introduced a dynamic
reward function, which is really useful to coordinate agents
in dynamic environments. Then, we presented results show-
ing the efficiency of RTBSS for the policemen tasks in the
RoboCupRescue simulation.

In our future work, we would like to improve our online
algorithm by reusing the information computed previously
in the simulation. This would allow being able to explore in
greater depth without using more computation time.
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