
A Polynomial Algorithm for Decentralized Markov
Decision Processes with Temporal Constraints

Aurélie Beynier, Abdel-Illah Mouaddib
GREYC-CNRS, University of Caen

Bd Marechal Juin, Campus II, BP 5186
14032 Caen cedex, France

{abeynier, mouaddib}@info.unicaen.fr

ABSTRACT
One of the difficulties to adapt MDPs for the control of cooperative
multi-agent systems, is the complexity issued from Decentralized
MDPs. Moreover, existing approaches can not be used for real
applications because they do not take into account complex con-
straints about the execution. In this paper, we present a class of
DEC-MDPs, OC-DEC-MDP, that can handle temporal and prece-
dence constraints. This model allows several autonomous agents
to cooperate so as to complete a set of tasks without communica-
tion. In order to allow the agents to coordinate, we introduce an
opportunity cost. Each agent builds its own local MDP indepen-
dently of the other agents but, it takes into account the lost in value
provoked, by its local decision, on the other agents. Existing ap-
proaches solving DEC-MDP are NEXP complete or exponential,
while our OC-DEC-MDP can be solved by a polynomial algorithm
with good approximation.

Categories and Subject Descriptors
I.2.11 [Artificial Intelligence]: Distributed Artificial Intelligence—
Multiagent systems; G.3 [Mathematics of Computing]: Probabil-
ity and Statistics—Markov processes

General Terms
Algorithms

Keywords
Multi-agent systems, Markov decision Processes, Planning, Uncer-
tainty

1. INTRODUCTION
Markov decision processes (MDPs) and partially observable Markov

Decision processes (POMDPs) have proved to be efficient tools
for solving problems of mono-agent control in stochastic environ-
ments. That’s why extensions of these models to cooperative multi-
agent systems, have become an important point of interest. Nonethe-
less, decentralization of the control and knowledge among the agents

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
AAMAS’05, July 25-29, 2005, Utrecht, Netherlands.
Copyright 2005 ACM 1-59593-094-9/05/0007 ...$5.00.

increases significantly the problem complexity, and effective meth-
ods to solve optimally decentralized MDPs are lacking. It has
been proved that solving optimally DEC-MDP and DEC-POMDP
is NEXP complete [3]. Boutilier [4] has proposed an extension of
MDPs : the multi-agent Markov decision processes which is poly-
nomial but, it is based on full observability of the global state by
each agent. Other attempts allow the agents to communicate in or-
der to exchange local knowledge : the DEC-POMDP with commu-
nication (DEC-POMDP-Com) proposed by Goldman and Zilber-
stein [5], the Communicative Multi-agent Team Decision Problem
(COM-MTDP) described by Pynadath and Tambe [8], the multi-
agent decision process by Xuan and Lesser [9], the Partial Ob-
servable Identical Payoff Stochastic Game (POIPSG) proposed by
Peshkin et al. [7]. Becker et al. has identified two classes of decen-
tralized MDPs that can be solved optimally : the Decentralized De-
cision Process with Event Driven Interaction (ED-DEC-MDP) [1]
and the Transition-Independent Decentralized MDPs (TI-DEC-MDP)
[2]. They are both exponential in the number of states, but they only
deal with very small problems. Figure 1 sums up the complexity of
existing approaches to solve decentralized MDPs.

Complexity

Polynomial in |S| Exponential in |S| NEXP Complete

OC−DEC−MDP DEC−POMDP

DEC−MDP

COM−MTDP

DEC−POMDP−Com

MDP

MMDP

EV−DEC−MDP

 TI−DEC−MDP

Figure 1: Classes of complexities of DEC-MDPs

In this paper, we present a class of DEC-MDPs, Opportunity
Cost DEC-MDP (OC-DEC-MDP), that can handle temporal and
precedence constraints. This class of DEC-MDPs allows several
autonomous agents to cooperate in order to complete a set of tasks
(a mission) without communication. This OC-DEC-MDP can be
solved by a polynomial algorithm and can deal with large mission
graphs.

The mission of the agents we consider is an acyclic graph of
tasks. Each task is assigned a temporal window [EST,LET] dur-
ing which it should be executed. EST is the earliest start time and
LET is the latest end time. The temporal execution interval of the
activity should be included in this window. Each task ti has pre-
decessors : the tasks that must be executed before ti can start, and
a reward : the reward the agent obtains when it has accomplished
the task. The execution times and the resource consumptions of the
tasks are uncertain, each task has a set of possible execution times
and their probabilities, and a set of possible resource consump-
tions and their probabilities. Their representation is discrete. Then,
Pc(δc) is the probability that the activity takes δc time units for

963

its execution, and Pr(∆r) is the probability that an activity con-
sumes ∆r units of resources. We assume that resource consump-
tion and execution time are independent. But, this assumption does
not affect the genericity of the model (we can use a probability dis-
tribution of (∆r, δc) such that P ((∆r, δc)) is the probability that
the activity takes δc time units and consumes ∆r resources). Each
node of the graph is a task and edges stand for precedence con-
straints. Figure 2 gives a mission example involving three agents
(robots) that have to explore a radioactive land. Agent 1 has to com-
plete radioactivity measurements and then compress the collected
data. Agent 2 must snap target 2 , complete radioactivity measure-
ments and analyze data. Agent 3 has to move to the target 1, and
snap it. Edges stand for precedence constraints : the agents must
have snapped the targets before agent 1 completes its radioactivity
measurements. Temporal constraints are given thanks to temporal
windows [EST, LET], mentioned by intervals : the radioactivity
measurements on target 2 can’t start before 5 and must be finished
at 7. Our model can deal with more important and complex mis-
sions, and with others applications such as rescue teams of robots,
satellites, ...

target 1

target 1

Snap

target 2

Agent 2

Agent 3

Snap

Move to

Agent 1

measurements

[3 ,6]

[3 ,6]

Agent 3
radioactivity

radioactivity

measurements

compress
data

Agent 1

analysis

Agent 2

[5 , 7]

Agent 2

data

Figure 2: A mission graph

Given these information, the problem is to choose, in an au-
tonomous way, the best decision about which task to execute and
when to execute it. This decision is based on the executed tasks
and on the temporal constraints. Our approach consists of solving
the multi-agent decision problem thanks to a Decentralized Markov
Decision Process. The system is composed on agents each of which
constructs a local MDP and derives a local policy, taking into ac-
count the temporal dependencies. Indeed, in the local MDP we in-
troduce an opportunity cost (OC) provoked by the current activity
of the agent by delaying the activities of the other agents related to
this activity. It measures the loss in value when starting the activity
with a delay ∆t. This cost is the difference between the value when
we can start on time and the value when our execution is delayed by
∆t. Each agent develops a local MDP independently of the local
policies of the other agents but, it introduces in its expected value
the opportunity cost of the possible delay provoked by his activity.

Goldman and Zilberstein [6] have identified properties of the
DEC-MDP and DEC-POMDP that influence the complexity of the
problem. Our OC-DEC-MDP is locally fully observable : each
agent fully observes its local state. Moreover, it is observation in-
dependent : the probability an agent observes O is independent
of the other agents’ observations. But, because of the precedence
constraints, our OC-DEC-MDP is not transition independent : the
transition probability of an agent to move from a state s to s′ relies
on its predecessor agents. The opportunity cost allows to assess
the effect of the decision of an agent on the expected value of the
other agents. Therefore, the agents do not have to build belief-state
MDPs that consider the agent’s belief about the other agents, nor
to communicate during the execution. All the information an agent
needs is the OC and its observation of its local state, thus the com-
plexity of the problem is reduced. Moreover communication is not
necessary during the execution.

The construction of OC-DEC-MDP (and of the local MDPs) is
based, first, on the construction of the state spaces, second, on the
computation of the opportunity cost for each task and the computa-
tion of the value of each state to construct the local policy. Section
2 describes some pre-computing algorithm, used to build the OC-
DEC-MDP. Section 3 provides a definition of the OC-DEC-MDP
and describes how to build the local MDPs. Section 4 presents the
value equation and the algorithm used to solve the problem. We
also present the complexity of our algorithm. Section 5 illustrates
how the algorithm performs. The contribution of this work and
remarks for future research direction are given in section 6.

2. PRELIMINARIES
In order to build the local MDPs, we need further information

that can be computed off-line thanks to propagation algorithms
which compute each task’s possible intervals of execution and their
probabilities.

2.1 Temporal Propagation
Given the temporal and precedence constraints, and the execu-

tion durations for each task, we determine the set of temporal in-
tervals during which a task can be executed, by propagating the
temporal constraints through the mission graph. The graph is orga-
nized into levels such that : L0 is the root of the graph, L1 contains
all the successors of the root (successors(root)), . . ., Li contains the
successors of all nodes in level Li−1. For each node (task) ti in a
given level Li, we compute all its possible intervals of time. The
start times are in [EST, LST] where LST = LET − min(δc)
and δc are the possible durations of the task. However an agent can
start the execution of ti if all the predecessors of ti have finished
their execution. Thanks to the end times of the predecessors, we
can validate the possible start times in [EST, LST]. In the follow-
ing, LBi stands for the first valid start time of ti (Lower Bound),
and UBi is the last valid start time (Upper Bound). For each node,
the intervals are computed by :

• level L0 : the start time and the end times of the root node
(the first task of the mission) are computed as follows :

st(root) = max{EST (root), start time}

= LBroot = UBroot

ET (root) = {st(root) + δ
root
c ≤ LET, ∀δroot

c }

where δroot
c is the computation time of the first activity (task)

of the mission and start time is the system “wake up” time.
Consequently, intervals of activities of the root are given by
I = [st(root), et(root)], where et(root) ∈ ET (root).

• level Li : Each node in level Li starts its execution when
all its predecessors end their own activities. Since each pre-
decessor has different possible end times, the possible start
times for nodes in level Li are also numerous. Firstly, we
compute the first possible start time of the considered node.
To do that, we compute the set of first end times (FET) of the
predecessors :

FET (node) =
[

pred∈parents(node)

(min
et∈ET (pred)

(et))

and then the maximum of these first end times represents the
first possible start time for the node.

FETAP (node) = max{EST, max
et∈FET (node)

(et)}

964

LBnode = FETAP (node)

Secondly, we compute the other possible start times of the
node. To do that we consider all the other possible end times
of the predecessors. Indeed, any predecessor pred finishing
after FETAP (at end time) is a possible start time of the
node because it represents a situation where all the other pre-
decessors have finished before FETAP and predecessor pred
has finished after FETAP at end time. Consequently, the
other possible start times are defined as follows :

OST (node) = {et ∈ ET (pred), et > FETAP}

UBnode = max{OST (node)}

The set of the possible start times of a node are :

ST (node) = {st ∈ FETAP (node)
S

OST (node)}

such that ESTnode ≤ st ≤ LSTnode

The set of the possible end times of the node is then given
by : ∀node ∈ leveli, [ET (node) =

S
∀δnode

c
,st
{st +

δnode
c < LETnode}] where δnode

c is the computation time of
the activity (task) at node node and st ∈ ST (node).

2.2 Probability Propagation
We describe, in this section, how we can weight each of these

computed intervals with a probability. This probabilistic weight
allows us to know the probability that an activity can be executed
during an interval of time with success. For that, a probability prop-
agation algorithm among the graph of activities is described using
the execution time probability. This algorithm has to use the prece-
dence constraints that affect the start time of each node, and the
uncertainty of execution time that affects the end time of the node.

2.2.1 Probability on start time
The computation of conditional start time has to consider the

precedence constraints. Indeed, they express the fact that an activ-
ity cannot start before its predecessors finish.

Let’s consider that the initial policy of an agent starts the activ-
ities as soon as the predecessors finish. Consequently, the proba-
bility DP (t) that an agent starts an activity at t is the product of
the probability that all predecessor agents terminate their activities
before time t and there is, at least, one of them that finishes at time
t. More formally speaking :
•for the root : DP (t) = 1, t = UBroot = LBroot

•for the other nodes :

DP (t) =
Y

a∈predecessors(c)

P
a
end(δe ≤ t)−

X

t1≤t

DP (t1)

Where a is an activity of a predecessor agent of the agent per-
forming the considered activity c and Pend(δe ≤ t) is the probabil-
ity that predecessor a finishes before or at time t. DP (t) is called
“absolute probability” because it is not relative to any decision on
the start time of the other agents, the agent starts as soon as possi-
ble.

On the other hand, let’s suppose that the agent decides to start an
activity at time t even if it can have started before t. The probability
that this situation occurs is

P
t′≤t

DP (t′) : the probability that
the predecessors have finished at t or before. This probability is
called “ relative probability” because it is relative to the decision of
starting the execution at t.

In the following, P abs
w (I) is the probability that the execution

occurs in the interval I if the agent follows its initial policy (start as
soon as possible). P rel

w (I) stands for the relative probability that
the execution occurs in the interval I if the policy dictates to the
agent to start the activity at st.

Then, P a
end(δe ≤ t) can be given as follows :

P
a
end(δe ≤ t) =

X

I1∈intervalles(a),et(I1)≤t

P
abs
w (I1)

This probability is the sum of probabilities that each predecessor a

executes its task in an interval I1 with an end time et(I1) less than
t.

Now we are able to show how we can compute the probability
that an execution occurs in an interval I .

2.2.2 Probability on a temporal interval of an activity
The probability that the execution duration of an activity ti+1

occurs during I = [st, et] is the probability that ti+1 starts at st

and it takes ∆t = et − st to finish. Furthermore, an agent starts
ti+1 when it finishes ti. Consequently, it knows the end time, let
it be et(I ′), of ti. That’s why we need to compute the probabil-
ity that ti+1 occurs in I when the agent knows that ti finishes at
et(I ′). To do that, we compute the probability P abs

w (I|et(I ′)ti
)

and P rel
w (I|et(I ′)ti

) such that :

P
abs
w (I|et(I ′)ti

) = DP (st(I)|et(I ′)ti
).Pc(et(I)− st(I))

P
rel
w (I|et(I ′)ti

) =
X

t′≤st(I)

DP (t′|et(I ′)ti
).Pc(et(I)− st(I))

Now, the probability DP (st(I)|etti
(I ′)) used below means that

we know activity ti has finished at et(I ′), and only the probability
that the other predecessor activities have been finished, should be
considered.

DP (st(I)|et(I ′)ti
) =

Y

a∈predecessors(ti+1)−ti

P
a
end(δe ≤ st(I)|et(I ′)ti

)

−
X

t1<st(I′)

DP (t1|et(I
′)ti

)

P
a
end(δe ≤ t|et(I ′)ti

) =
X

I1∈intervalles(a),et(I1)≤t

P
abs
w (I1|et(I

′)ti
)

3. FORMAL FRAMEWORK DESCRIPTION

3.1 The OC-DEC-MDP model
From the graph of tasks (mission) that the agent should accom-

plish, we isolate for each agent the tasks it has to execute, named
agent’s graph in figure 3. This agent’s graph is then used to build
the local MDP of the agent taking into account the precedence con-
straints. We name the set of local MDPs, OC-DEC-MDP.

DEFINITION 1. An OC-DEC-MDP for n agents is a set of n

local MDPs.
A local MDP for an agent Ai is defined by a tuple < Si, Ti, Pi, Ri >

where :

• Si is the finite set of states of the agent Ai

• Ti is the finite set of tasks of the agent Ai

• Pi is the transition function where P (s′i|si, ti) is the proba-
bility of the outcome state s′i for agent Ai when it executes
the task ti in state si

965

���
�

���
�

���
�

���
�

��	
	

�
�

��

OC−DEC−MDPAgents’ Graphs
Agent 1

move

snap

snapmeasur.

compress

analysis

compress

Agent 3Agent 2
INI 1

measur.

compress snap

snap

compress

analysis

move

Agent 2

INI 2 INI 3

Agent 3Agent 1

Figure 3: Relationship between the graphs of tasks and the OC-
DEC-MDP

• Ri is the reward function. Ri(ti) is the reward obtained
when the agent has executed ti.

As we will explain later, dependencies between local MDPs (due
to temporal and precedence constraints) are taken into account thanks
to the Opportunity Cost. In the rest of the section, we give more de-
tails about each component of the local MDPs.

3.1.1 States
At each decision step, Ai has executed a task ti during an in-

terval I and it has r resources. The decision process constructs its
decision given these three parameters. The states are then triplets
[ti, I, r] where ti is the last executed task and I is the interval dur-
ing which the task ti has been executed and r is the rate of available
resources.

Figure 3 shows that a fictitious initial task is added in each local
MDP. Each box gathers the states associated to a task ti. Each node
stands for a state [ti, I, r].

3.1.2 Tasks - Actions
At each decision step, the agent must decide when to start the

next task. The actions to perform consist of“Executing the next
task ti at time st : E(ti, st)”, that is the action to start executing
task ti at time st when the task ti−1 has been executed. Actions are
probabilistic since the processing time and the resource consump-
tion of the task are uncertain.

3.1.3 Transitions
We assume that the actions of one agent is enough to achieve a

task. The action of an agent allows the decision process to move
from state [ti, I, r] to a success state [ti+1, I

′, r′] or to a failure
state. The transitions are formalized as follows :

• Successful transition: The action allows the process to change
to a state [ti+1, I

′, r′] where task ti+1 has been achieved dur-
ing the interval I ′ respecting the EST and LET time of this
task. r′ = r −∆r is the remaining resources for the rest of
the plan. The probability to move to the state [ti+1, I

′, r′] is :

P1 =
X

r≥∆r

X

et(I′)≤LET

Pr(∆r).P rel
w (I ′|et(I)ti

)

• Too early start time Transition : The agent starts too early
before all the predecessor agents have finished their tasks.
We consider that when an agent starts before its predeces-
sor agents finish, it realizes it immediately. This means that
the agent, at st + 1, realizes that it fails. This state is a
non-permanent failure because the agent can retry later. We
represent this state by [ti, [st, st + 1], r′] where r′ = r −

∆r′failure such that ∆r′failure is a penalty in resource when
an agent fails. The probability to move to this state is the
probability that the predecessors have not finished and the
agent has enough resources to be aware of it. The probability
Pnot end(st) that the agent’s predecessors have not finished
at st is the probability that the predecessors will finish later
or will never finish.

Pnot end(st) = (
Y

a∈predecessors(ti+1)−ti

X

Ia :et(Ia)>LET−minδi

Pw(Ia|et(I)ti
)−

X

t′≤st

DP (t′|et(I)ti
))+

(1−
Y

a∈predecessors(ti+1)−ti

X

Ia

Pw(Ia|et(I)ti
))

The probability to move to a state [ti, [st, st + 1], r′] is :
P2 = Pnot end(st) where r′ ≥ 0 and st ≤ UB.

• Insufficient resource Transition : The execution requires more
resources than available or the predecessors have not finished
and the necessary resources to be aware of it are not sufficient
(r′ < 0). This transition moves to the state [failureti+1

,

[st, +∞], 0]. The probability to move to this state is :

P3 =
“ X

t′≤st

DP (t′|et(I)ti
)

X

r<∆r

Pr(∆r) + Pnot end

”

• Too late start time Transition : The task starts too late and
the execution meets the deadline LET. The agent moves to
the state [failureti+1

, [st, +∞], r] . This case arises when
st > LST . Otherwise (st ≤ UB), P4 = 0. The probability
to move to this state is : P4 = Pnot end(st > UB)

• Deadline met Transition : The action starts an execution at
time st but the duration δ

ti+1

c is so long that the deadline is
met. This transition moves to the state [failureti+1

, [st, +∞], r].
The probability to move to this state is :

P5 =
X

r≥∆r

X

st+δ
ti1
c >LET

Pr(∆r).DP (st|et(I)ti
).P

ti+1

c (δc)

It is straightforward that P1 + P2 + P3 + P4 + P5 = 1 and the
transition system is complete.

3.1.4 Rewards
Each agent, Ai, receives a reward Ri presumably based on the

executed task. The reward function is assumed given Ri(ti) and
Ri([failureti

, ∗, ∗]) = 0.
Once the local MDPs have been built, each agent’s policy can be

computed. The next section describes how to solve the OC-DEC-
MDP.

4. PROBLEM RESOLUTION
A policy is computed for each agent, thanks to a modified Bell-

man equation and a polynomial dynamic programming algorithm.
The use of OC in the Bellman equation allows each agent to take
into account the other agents, and therefore to coordinate without
communication. This section presents the modified Bellman equa-
tion we use and introduces the notion of OC. It also gives some
results about the valuation algorithm we have developed.

966

4.1 Value Function

4.1.1 Bellman Equation
Given the different transitions described previously, we can adapt

our former to Bellman equation as follows :

V [ti, I, r] =

immediate gain
z }| {
Ri(ti) −

Opportunity Cost
z }| {X

k∈succ

OCk(et(I)− LBk)

+

Expected value
z }| {
maxE(ti+1,st),st>current time(V

′)

where succ are the successors of ti executed by an other agent,
et(I) is the end time of the interval I and LBk is the first possible
start time of the task tk. OCk(et(I) − LBk) is the opportunity
cost provoked on tk when its possible start times are reduced to
[LBk + ∆t, UBk].

This equation means that the agents’ rewards Ri(ti) are reduced
by an opportunity cost due to the delay provoked in the successor
agents.

The best action to execute in state [ti, I, r] is given by :

Expected value
z }| {
argmaxE(ti+1,st),st>current time(V

′)

V ′ is such that : V ′ = V 1 + V 2 + V 3 + V 4. Each part of V ′

stands for a type of transitions :

• Successful transition : V 1 = P1.V ([ti+1, I
′, r′])

• Too early start time Transition :

V 2 = P2.V ([ti, [st, st + 1], r′])

• Insufficient resource Transition :

V 3 = P3.V ([failureti+1
, [st, +∞], 0])

• Too late start time or Deadline met Transitions :

V 4 = (P4 + P5).V ([failureti+1
, [st, +∞], ∗])

The value of the failure state associated to ti is given by :
V

∗
fail(ti)

= −Rti
−

X

suc/∈agent(ti)

OC(fail)succ −
X

suiv∈agent(ti)

Rsuiv

where −Rti
is the immediate penalty due to the failure of ti,

−
P

suc/∈agent(ti)
OC(fail)suc is the Opportunity Cost on the suc-

cessors of ti (succ are the successors of ti executed by other agents),
and −

P
suiv∈agent(ti)

Rsuiv is the lost in value due to the failure
of all the remaining tasks executed by the same agent as ti.

4.1.2 Approximation of Opportunity Cost
Opportunity cost comes from economics. We use it to measure

the effect of the decision of an agent Ai, about the start time of ti,
on a successor agent Aj . Let tj be the successor task of ti executed
by Aj . Agent Ai can select a start time sti of ti in [LBi, UBi]
while agent Aj selects the start time stj of tj in [LBj , UBj]. The
fact that Ai decides to start at sti and it finishes at eti, can reduce
the possible start times of tj to [LBj+∆t, UBj] where ∆t = eti−
LBj (tj can start after ti finishes). Let V ∗0

j be the expected value
of Aj when stj can be selected from [LBj , UBj], and V ∗∆t

j the
expected value when stj can be selected from [LBj + ∆t, UBj].

OCtj
(∆t) = V

∗0
tj
− V

∗∆t
tj

(1)

This cost is computed for all ∆t from 0 to UBj − LBj .

V
∗∆t

tj
=

X

∆t
tj
c

Pc(δ
tj

c).V [tj , [stj , stj + δ
tj

c], rmax
tj

]

[tj , [stj , stj+δ
tj

c], rmax
tj

] describes the states that can be reached
when the execution of the task tj starts at stj . stj is the best start
time of tj in [LB + ∆t, UB] which is the set of possible start
times when the task is delayed by ∆t. [stj , stj +δ

tj

c] describes the
possible execution intervals. When stj + δ

tj

c > LET , we have :

V [tj , [stj , stj + δ
tj

c], rmax
tj

] = V (failure(tj))

When ∆t > UBtj
− LBtj

the execution starts before the last
possible start time UBtj

, temporal constraints are violated and

V ∗∆t
tj

= −
“
R(tj) +

P
a∈AllSucc(tj)

R(a)
”

.

The expected values V ∗0
tj

and V ∆t
tj

have been computed for states

[tj , [stj , stj + δ
tj

c], rmax
tj

] where stj ∈ [LB + ∆t, UB] . We as-
sume (assumption) that agent Aj has its maximum resources rmax

tj

because there is no effect of the decision of the agent Ai on the
resources of agent Aj . Also, we need to assess the effect of agent
Ai’s decision on failing agent Aj when this failure is not due to the
lack of resources of agent Aj . That’s why, we assume that Aj has
all its maximum resources :

rmax
tj

= rini −
P

tk∈Pred(tj)
mintk

(∆r) where Pred(tj) is

the set of tasks executed by the agent before tj , and mintk
(∆r) is

the minimal resource consumption of tk.
Our modified Bellman equation is used in a valuation algorithm

which computes the values of all the agents’ states and thus deter-
mines a policy for each agent.

4.2 Resolution of the OC-DEC-MDP

4.2.1 Valuation algorithm
In order to evaluate each state in the local MDPs and to compute

each agent’s policy, a dynamic programming algorithm is used. Be-
cause of dependencies between the graphs of the agents, the algo-
rithm evaluates the local MDPs in parallel. In figure 3, if we want
to compute the values of the states associated to “snap target 1”,
we need the value of the opportunity cost for “radioactivity mea-
surements by agent 1”. To compute the opportunity cost for “ra-
dioactivity measurements by agent 1”, we must have valued the
states associated to this task, and consequently we need the OC for
“analyze data”. Therefore the local MDPs of agents 1, 2 and 3
must be valued at the same time. The states of the OC-DEC-MDP
(union of the states of the local MDPs), are organized into levels.
The first level contains the root of the mission graph. The level
Ln contains all the successors, in the mission graph, of the tasks in
Ln−1. For each level, from the last level to the root, the valuation
algorithm evaluates the states associated to each task in the current
level. Thus, states from different local MDPs are valued at the same
time. The “pseudo-code” of the valuation algorithm is :

The computation of a value V ([ti, I, r]) for a state [ti, I, r] is
done thanks to the previous Bellman Equation. It allows to deter-
mine the policy for this state.

Each agent knows the mission graph and then computes its pol-
icy. This algorithm can be executed by each agent in a centralized
way if the agents can not communicate before the execution. If the
agents can communicate before the execution, the algorithm can be
executed in a decentralized way : each agent computes the values
of its own states and sends the OC values of each of its task ti to the
predecessors of ti. The mission is always executed in a distributed
way and the agents do not communicate.

967

Algorithm 1 Evaluation Algorithm
1: for level Ln from the leaves to the root do
2: for all task ti in level Ln do
3: Compute V for the failure state: [failure(ti), ∗, ∗]
4: for all start time st from UBti

to LBti
do

5: for all resource rate rti
of a partial failure do

6: Compute V for non-permanent failure state :
[ti, [st, st + 1], rti

]
7: end for
8: for all duration ∆t1 of ti do
9: for all resource rate rti

of ti’s safe execution do
10: Compute V for the safe states : [ti, [st, st +

∆t1], rti
]

11: end for
12: end for
13: Compute V ∗∆t

k where ∆t = st− LBti

14: end for
15: for all V ∗∆t

k computed previously do
16: Compute OC(∆t) = V ∗0

k − V ∗∆t
k

17: end for
18: end for
19: end for

4.2.2 Problem Complexity
An upper bound on the complexity of OC-DEC-MDP can be

computed. It takes into account the state space size of the OC-DEC-
MDP which relies on : #ntasks the number of tasks of the agent,
#nMax Interv the maximum of intervals per task, #nMax Res the
maximum of resource levels per task and #nMax Start the maxi-
mum of start time per task.

These parameters (intervals per task, range of available resources)
affect the complexity of the problem. In the worst case, the state
space size, for each agent (local MDP state space size), is given by
the following equation :

|S| = #ntasks.(#nMax Interv + nMax Start).#nMax Res (2)

In the worst case, each value in [LB, UB] is a possible start time
and each duration is possible. Then,

#nMax Interv = (UB − LB)×#nMax Dur (3)

and #nMax Start = UB − LB where #nMax Dur is the maxi-
mum number of durations for a task.

THEOREM 1. An OC-DEC-MDP with temporal and precedence
constraints is polynomial in the number of states.

Proof : The algorithm described previously solves the OC-
DEC-MDP. It passes through the state space of each local MDP
and values each state. The valuation of a state “Compute V” has
a complexity of O(1). Lines 4-10 value all the states associated
to a task ti. The complexity of this phase is O((#nMax Interv +
#Max Start).#nMax Res). Lines 11-15 compute the OC value
for each delay of ti. In the worst case, the number of delays is
equal to the number of possible start times. That’s why, the com-
plexity is O(UB − LB). Lines 4-15 are executed for each task.
Moreover, O(UB − LB) << O(#nMax Interv). The overall
complexity of the algorithm is then O(#ntasks.(#nMax Interv +
#nMax Start).#nMax Res).

Given equation 2, the complexity is O(|S|) and the algorithm is
polynomial in |S| where S is the set of states. 2

To sum up, our valuation algorithm of OC-DEC-MDP is polyno-
mial in |S|whereas other approaches are in best case exponential in

|S|. The states do not include observations about the other agents,
so the number of states is quite fair. Moreover, most of existing ap-
proaches do not consider temporal and precedence constraints even
if such constraints are often encounter in MAS.

THEOREM 2. Adding communication during the execution of
the agents with unlimited resources, does not improve the perfor-
mance of the OC-DEC-MDP.

Proof : Let us assume that agents send messages to interested
agents when they finish a task. And, an agent α does not start the
execution of a task ti until it receives a notification from all agents
executing tasks tj preceding task ti. Does this communication be-
tween agents improve the performance of the OC-DEC-MDP ?

Let i be the time at which all the messages from agents achieving
tasks tj preceding the task ti and [LB, UB] be the lower and upper
bounds of start time of task ti. Three cases are possible in which we
compare respectively the cost K1 of OC-DEC-MDP and the cost
K2 of OC-DEC-MDP-COM (OC-DEC-MDP augmented with a
mechanism of communication).

• i ∈ [LB, UB] : OC-DEC-MDP-COM has a a cost :

K2 =
X

k∈pred(α)

cost of Comk + cost wait(i− LB)

OC-DEC-MDP without communication has as a cost :

K1 = (i− LB).Cost Partial failure

We assume in our case that the cost of partial failure is 1
time unit and that the communication, in best case, costs
(cheapest) also 1 time unit. In such situation, we have :K2 =
(i− LB) + pred(α) and K1 = (i− LB)

We can see that in this case OC-DEC-MDP outperforms OC-
DEC-MDP-COM.

• i < LB : in this case, as soon as the OC-DEC-MDP tries
to start it successes. Then the cost is 0. However, the cost
of communication in OC-DEC-MDP-COM is at least 1 time
unit. Consequently, the OC-DEC-MDP outperforms OC-
DEC-MDP-COM.

• i > UB : in OC-DEC-MDP, agent α will temporary fail
UB − LB times before failing definitively while in OC-
DEC-MDP-COM, it will wait up to UB before failing defini-
tively. In addition to that, messages are sent but they won’t be
used. Consequently, OC-DEC-MDP outperforms OC-DEC-
MDP-COM.

K2 =
X

k∈pred(α)

cost of Comk + cost wait(UB − LB)

K1 = (UB−LB).Cost Partial Failure = UB−LB2

5. EXPERIMENTS
Experiments have been developed in order to test the scalability

and performance of our approach. As mentioned previously, the
state space size relies on several parameters. For instance, changes
in the temporal constraints influence the number of intervals per
task. In the worst case, the number of intervals for a task is given
by equation 3. If the temporal constraints are tight, the interval
[LB , UB] is reduced. We then compute few intervals and the num-
ber of states decreases. When we increase the size of the temporal
windows, the state space size grows. Indeed, temporal constraints
are less tight, and new execution plans (involving new states) can
be considered.

968

When we increase the number of agents that execute the mis-
sion, the state space size decreases : each agent has less tasks to
execute, the number of triplets [ti, I, r] is smaller. For a mission
of 200 tasks and 3 agents, the number of states per local MDP is
about 250 000. If we increase the number of agents to 15, then the
state space size of each local MDPs is about 75 000 states. A peak
in the number of states can be observed when starting to increase
the number of agents. It is due to an augmentation in the number
of available resources for each task. In our experiments, initial re-
sources are tight. Moreover, we don’t consider the possible rates
less than zero. When we increase the number of agents, each one
has less tasks to execute and the initial resources become wider.
The lack of resources (r ≤ 0) becomes scarce and the number of
possible resource rates, greater than zero that have to be consid-
ered, increase. Figure 4 shows the changes in the state space size
through the mission’s size and the number of agents. If we increase
the initial resource rate, resources become wider and agents don’t
lack of them, all the resource combinations are positive. The aug-
mentation in the number of agents, don’t increase the number of
possible resource rates greater than zero. If resources are unlimited
there is no peak.

 0

 50000

 100000

 150000

 200000

 250000

 5 10 15 20 25 30 35 40 45 50

N
um

be
r

of
 s

ta
te

s

Number of agents

State space size

200 tasks

150 tasks

100 tasks

Figure 4: Changes in the state space size

When we increase the number of precedence constraints per task,
the number of states decreases. The constraints reduce the number
of possible intervals of execution per task, and therefore the num-
ber of states diminishes. For instance, given 3 agents and 200 tasks
to execute, the state space size is about 500 000 states for 25 con-
straints and 300 000 states for 45 constraints. Figure 5 shows these
changes for missions of 100, 150 or 200 tasks executed by 3 agents
(worst case in figure 4).

 0

 100000

 200000

 300000

 400000

 500000

 600000

 700000

 800000

 5 10 15 20 25 30 35 40 45 50

N
b.

 s
ta

te
s

Nb. constraints

State space size

100 tasks

150 tasks

200 tasks

Figure 5: Changes in the state space size

Experiments have shown that our approach can deal with large
mission graphs. Experiments with larger graphs are under devel-
opment, even if first experiments have proved that our approach is
suitable for the applications we deal with. Different scenari have
also been implemented on simulators, they involve several robots

that have to explore a planetary site or deal with a crisis situation.
First experiments have shown that our approach allows the agents
to accomplish their tasks with weak number of partial failures. Al-
though, this approach is not optimal. The current experimental re-
sults show that it’s a good approximation.

6. CONCLUSION
The framework of decentralized MDPs has been proposed to

solve decision problem in cooperative multi-agent systems. Never-
theless, most of DEC-MDP are NEXP-Complete. In this paper we
have identified the OC-DEC-MDP class which has a polynomial
complexity. Moreover, OC-DEC-MDP model can handle temporal
and precedence constraints that are often encountered in real world
applications, but not considered in most of existing models. Each
agent builds its own local MDP, taking into account its own tasks.
Each local MDP is a standard MDP valued off-line thanks to our
algorithm that uses a modified Bellman equation and computes the
OC values. Thanks to the opportunity cost no communication is
needed during the execution, the agents can work even if commu-
nications are not possible or too expensive. Moreover, the agents
do not have to complete observations about the others, so the com-
plexity of the problem is reduced and a polynomial algorithm has
been proposed to solve such OC-DEC-MDP.

Future work will concern the improvement of the performance
of this approach by better estimating OC. In the current approach,
OC is over-estimated and the agents assume that for each decision
there is a cost. In fact, there is a likelihood that this cost can happen.
That’s why, a new approach should be considered with an expected
opportunity cost.

7. ACKNOWLEDGEMENTS
The authors would like to thank Shlomo Zilberstein for his help-

ful comments. This project was supported by the national robotic
program Robea and “Plan Etat-Région”.

8. REFERENCES
[1] R. Becker, V. Lesser, and S. Zilberstein. Decentralized

Markov Decision Processes with Event-Driven Interactions. In
AAMAS, volume 1, pages 302–309, NYC, 2004.

[2] R. Becker, S. Zilberstein, V. Lesser, and C. V. Goldman.
Transition-Independent Decentralized Markov Decision
Processes. In AAMAS, pages 41–48, Melbourne, Australia,
July 2003.

[3] D. Bernstein and S. Zilberstein. The complexity of
decentralized control of mdps. In UAI, pages 819–840, 2000.

[4] G. Boutilier. Sequential optimality and coordination in
multiagents systems. In IJCAI, pages 478–485, 1999.

[5] C. Goldman and S. Zilberstein. Optimizing information
exchange in cooperative multiagent systems. In AAMAS,
pages 137–144, 2003.

[6] C. Goldman and S. Zilberstein. Decentralized control of
cooperative systems : Categorization and complexity analysis.
Journal of Artificial Intelligence Research, to appear.

[7] L. Peshkin, K. Kim, N. Meuleu, and L. Kaelbling. Learning to
cooperate via policy search. In UAI, pages 489–496, 2000.

[8] D. Pynadath and M. Tambe. The communicative multiagent
team decision problem: Analyzing teamwork theories and
models. Journal of Artificial Intelligence Research, pages
389–423, 2002.

[9] P. Xuan, V. Lesser, and S. Zilberstein. Communication
decisions in multiagent cooperation. In Autonomous Agents,
pages 616–623, 2000.

969

